Advanced Techniques in Machine Learning (89-654-01)
Exam - Moed Aleph

Dr. Yossi Keshet
July 27, 2016

Instructions
- Total time: 3 hours.
- All written or printed material is allowed.
- You should answer all questions.
- Explain your steps.
- Good luck!

1. A modified version of the Perceptron algorithm is given in Figure 1.

 INIT: training set $S = \{(x_i, y_i)\}_{i=1}^m$
 INITIALIZE: $w = 0$
 LOOP:
 - choose example (x_i, y_i) uniformly at random from S
 - if $y_i w \cdot x_i < -1$:
 - update: $w = w + y_i x_i$

 Figure 1: Large margin Perceptron

(a) Assume that $\|x_i\| \leq R$ for all i and that there exists a vector u, $\|u\| = 1$ such that $y_i (u \cdot x_i) \geq \gamma$ for all i. Derive an upper bound for the number of mistakes made by this new Perceptron algorithm. [15 pt]

(b) How the new bound you derived in (a) compares to the standard Perceptron bound and why? [4 pt]

(c) Write the new Perceptron algorithm in its kernel from? That is, instead of w use its implicit definition:

\[w \cdot x = \sum_{j=1}^{i} \alpha_j x_j \cdot x \]

What are α_j in this algorithm? [8 pt]

(d) What is the advantage of the negative margin Perceptron algorithm when working with kernels and huge amount of training data [7 pt]
2. You would like to write a software for solving crossword puzzles (TASHBETZ). In order to do so, the user of the software inputs in the a search bar terms and the tool returns a lift of words. For each term \(t \in T \) (\(T \) is the set of known terms) the system pulls a set of \(N \) candidate word definitions. Each candidate definition has a set of features \(x \in \mathbb{R}^d \) and a label \(y \in \{-1, +1\} \) indicating if the definition is relevant or not.

(a) Given a training set \(S \) of \(m \) terms with \(N \) candidate definitions,

\[
S = \{(q^i, (x^i_1, \ldots, x^i_N), y^i)\}_{i=1}^m,
\]

propose an algorithm for the task. [28 pt]

(b) You would like to allow users of the tools to add their own definitions. Do you need to retrain you algorithm every time a new definition is entered? explain. [5 pt]

3. We would like to predict where is a square located in an image as in Figure 2. Each square is defined by a vector of four points \(y = (y_1, y_2, y_3, y_4) \). The predicted square is denoted by \(\hat{y} = (\hat{y}_1, \hat{y}_2, \hat{y}_3, \hat{y}_4) \). The performance are measure by the intersection between the squares \(y \) and \(\hat{y} \) divided by their union (called intersection-over-union), and denoted \(\gamma(y, \hat{y}) \).

(a) Propose an algorithm that predicts \(\hat{y} \) and aims at maximizing \(\gamma(y, \hat{y}) \) given a training set of images and labeled squares. [28 pt]

(b) Suggest a feature function for such a prediction. The feature should not be describe mathematically, just conceptually with words. [5 pt]

![Figure 2: Image with a square](image-url)