Large Margin Algorithms for Discriminative Continuous Speech Recognition

Thesis submitted for the degree of “Doctor of Philosophy”

by

Joseph Keshet

Submitted to the Senate of the Hebrew University
September 2007
This work was carried out under the supervision of

Prof. Yoram Singer
To my beloved wife, Lital
Abstract

Automatic speech recognition has long been a considered dream. While ASR does work today, and it is commercially available, it is extremely sensitive to noise, talker variations, and environments. The current state-of-the-art automatic speech recognizers are based on generative models that capture some temporal dependencies such as hidden Markov models (HMMs). While HMMs have been immensely important in the development of large-scale speech processing applications and in particular speech recognition, their performance is far from the performance of a human listener. HMMs have several drawbacks, both in modeling the speech signal and as learning algorithms. The present dissertation develops fundamental algorithms for continuous speech recognition, which are not based on the HMMs. These algorithms are based on latest advances in large margin and kernel methods, and they aim at minimizing the error induced by the speech recognition problem.

Chapter 1 consists of a basic introduction of the current state of automatic speech recognition with the HMM and its limitations. We also present the advantages of the large margin and kernel methods and give a short outline of the thesis.

In Chapter 2 we present large-margin algorithms for the task of hierarchical phoneme classification. Phonetic theory of spoken speech embeds the set of phonemes of western languages in a phonetic hierarchy where the phonemes constitute the leaves of the tree, while broad phonetic groups — such as vowels and consonants — correspond to internal vertices. Motivated by this phonetic structure, we propose a hierarchical model that incorporates the notion of the similarity between the phonemes and between phonetic groups. As in large margin methods, we associate a vector in a high dimensional space with each phoneme or
phoneme group in the hierarchy. We call this vector the prototype of the phoneme or the phoneme group, and classify feature vectors according to their similarity to the various prototypes. We relax the requirements of correct classification to large margin constraints and attempt to find prototypes that comply with these constraints. In the spirit of Bayesian methods, we impose similarity requirements between the prototypes corresponding to adjacent phonemes in the hierarchy. The result is an algorithmic solution that may tolerate minor mistakes — such as predicting a sibling of the correct phoneme — but avoids gross errors, such as predicting a vertex in a completely different part of the tree. The hierarchical phoneme classifier is an important tool in the subsequent tasks of speech-to-phoneme alignment and keyword spotting.

In Chapter 3 we address the speech-to-phoneme alignment problem, namely the proper positioning of a sequence of phonemes in relation to a corresponding continuous speech signal (this problem also referred to as “forced alignment”). The speech-to-phoneme alignment is an important tool for labeling speech datasets for speech recognition and for training speech recognition systems. Conceptually, the alignment problem is a fundamental problem in speech recognition, for any speech recognition can theoretically be built using a speech-to-phoneme alignment algorithm, simply by evaluating all possible alignments of all possible phoneme sequences and choosing the phoneme sequence which attains the best confidence. The alignment function we devise is based on mapping the speech signal and its phoneme representation along with the target alignment into an abstract vector-space. Building on techniques used for learning SVMs, our alignment function distills to a classifier in this vector-space, which is aimed at separating correct alignments from incorrect ones. We describe a simple online algorithm for learning the alignment function and discuss its formal properties. We show that the large margin speech-to-phoneme alignment algorithm outperforms the standard HMM method.

In Chapter 4 we present a discriminative algorithm for a sequence phoneme recognizer, which aims at minimizing the Levenshtein distance (edit distance) between the model-based predicted phoneme sequence and the correct one.
In Chapter 5 we present an algorithm for finding a word in a continuous spoken utterance. The algorithm is based on our previous algorithms and it is the first task demonstrating the advantages of discriminative speech recognition. The performance of a keyword spotting system is often measured by the area under the Receiver Operating Characteristics (ROC) curve, and our discriminative keyword spotter aims at maximizing it. Moreover, our algorithm solves directly the keyword spotting problem (rather than using a large vocabulary speech recognizer) and does not estimate any garbage or background model. We show that the discriminative keyword spotting outperforms the standard HMM method.

We conclude the thesis in Chapter 6, where we present an extension to our work on full blown large vocabulary speech recognition and language modeling.
I am extraordinarily grateful to my advisor Yoram Singer. I am grateful for his generous sharing of his expertise, ideas, and lucid view of machine learning that we have discussed over the years. I would also like to thank him for his generous financial support. I feel extremely lucky to have been his student.

I am deeply grateful for the guidance of Dan Chazan. Every research suffers from bad moments. In those moments Dan always knew how to encourage, support, and guide me. He taught me his ultra-optimistic way of looking at scientific problems and I am thankful to him for that.

Shai-Shalev Shwartz, Ofer Dekel and Koby Crammer were great partners and friends. Much of this thesis is the product of my collaborations with them. I would like to thank each of them for being such good friends and collaborators, and for all the things I have learned from them during our work together.

I feel particularly fortunate to work with Samy Bengio, David Grangier, and Hynek Hermansky from the IDIAP Research Institute in Switzerland. They are great collaborators and friends. I am thankful for their true friendship and for their hospitality. I am thankful for the PASCAL network of excellence and the DIRAC project for funding the collaborated research and the stays at IDIAP during the years 2002-2006.

Finally, I am grateful for the generous financial support provided by the Leibniz center and by the PASCAL network of excellence.
Contents

1 Introduction .. 1
 1.1 Current State of Speech Recognition 2
 1.1.1 HMM-based Speech Recognition 2
 1.1.2 HMMs limitations 5
 1.2 Large Margin and Kernel Methods 8
 1.3 Outline .. 9

2 Hierarchical Phoneme Classification 12
 2.1 Introduction 12
 2.2 Problem Setting 14
 2.3 An Online Algorithm 16
 2.4 Batch Learning and Generalization 22
 2.5 Experimental Results 26

3 Speech-to-Phoneme Alignment 30
 3.1 Introduction 30
 3.2 Problem Setting 31
 3.3 Cost and Risk 33
 3.4 A Large Margin Approach for Alignment 34
 3.5 An Iterative Algorithm 38
 3.6 Efficient Evaluation of the Alignment Function .. 44
3.7 Base Alignment Functions ... 47
3.8 Experimental Results .. 50

4 Phoneme Sequence Recognition 53
4.1 Introduction .. 53
4.2 Problem Setting ... 53
4.3 The Learning Algorithm .. 55
4.4 Non-Linear Feature Function 60
4.5 Experimental Results .. 62

5 Discriminative Keyword Spotting 64
5.1 Introduction .. 64
5.2 Problem Setting ... 66
5.3 A Large Margin Approach for Keyword Spotting 68
5.4 An Iterative Algorithm .. 71
5.5 Theoretical Analysis ... 73
5.6 Feature Functions ... 76
5.7 Experimental Results .. 78

6 Discussion .. 83

Bibliography ... 90
List of Tables

2.1 Online algorithm results. ... 27
2.2 Batch algorithm results. ... 27

3.1 Percentage of correctly positioned phoneme boundaries, given a predefined tolerance on the TIMIT corpus. ... 51
3.2 Percentage of correctly positioned phoneme boundaries for each element of the vector w. ... 51

4.1 Calculation of K_1: only the bold lettered phonemes are taken into account. 61
4.2 Phoneme recognition results comparing our kernel-based discriminative algorithm versus HMM. ... 63

5.1 The AUC of the discriminative algorithm compared to the HMM in the experiments. ... 82
List of Figures

1.1 The basic notation of HMM speech recognizer. ... 3
1.2 The basic HMM topology of a phone. Each phone is typically represented
with a three state left-to-right HMM. The estimated transition probability
between state i and j is denoted as a_{ij}. The estimated output probability of
an acoustic vector x_t, given it was emitted from the state i, is denoted by
$b_i(x_t)$. ... 4

2.1 The phonetic tree of American English. .. 13
2.2 An illustration of the update: only the vertices depicted using solid lines are
updated. ... 18
2.3 Online hierarchical phoneme classification algorithm. 19
2.4 The distribution of the tree induced-error. Each bar corresponds to the differ-
ence between the error of the batch algorithm minus the error of a multiclass
predictor. The left figure presents the results for the last hypothesis and the
right figure presents the results for the batch convergence. 28

3.1 A spoken utterance labeled with the sequence of phonemes /p1 p2 p3 p4/ and
its corresponding sequence of start-times (s_1 s_2 s_3 s_4). 32
3.2 An illustration of the constraints in Equation (3.3). Left: a projection which
attains large margin. Middle: a projection which attains a smaller margin.
Right: an incorrect projection. ... 36
3.3 The speech-to-phoneme alignment algorithm. ... 41
3.4 An efficient procedure for evaluating the alignment function. 46
3.5 A schematic description of one of the first four base functions used for speech-to-phoneme alignment. The depicted base function is the sum of the Euclidean distances between the sum of 2 frames before and after any presumed boundary s_i. ... 49
3.6 A schematic description of the fifth base function. This function is the sum of all the scores obtained from a large margin classifier, given a sequence of phonemes and a presumed sequence of start-times. 49
3.7 A schematic description of the sixth base function. This function is the sum of the confidences in the duration of each phoneme given its presumed start-time. ... 49
4.1 An iterative algorithm for phoneme recognition. 57
5.1 Example of our notation. The waveform of the spoken utterance “a lone star shone...” taken from the TIMIT corpus. The keyword k is the word *star*. The phonetic transcription \bar{p} along with the alignment sequence \bar{s} are schematically depicted in the figure. 66
5.2 An iterative algorithm. ... 73
5.3 ROC curves of the discriminative algorithm and the HMM approach, trained on the TIMIT training set and tested on 80 keywords from TIMIT test set. The AUC of the ROC curves is 0.99 and 0.96 for the discriminative algorithm and the HMM algorithm, respectively. ... 79
5.4 ROC curves of the discriminative algorithm and the HMM approach, trained on the TIMIT training set and tested on 80 keywords from WSJ test set. The AUC of the ROC curves is 0.94 and 0.88 for the discriminative algorithm and the HMM algorithm, respectively. ... 79
5.5 HMM topology for keyword spotting. ... 80
Chapter 1

Introduction

Automatic speech recognition (ASR) is the process of converting a speech signal to a sequence of words, by means of an algorithm implemented as a computer program. While ASR does work today, and it is commercially available, it is extremely sensitive to noise, talker variations, and environments. The current state-of-the-art automatic speech recognizers are based on generative models that capture some temporal dependencies such as hidden Markov models (HMMs). While HMMs have been immensely important in the development of large-scale speech processing applications and in particular speech recognition, their performance is far from the performance of a human listener. In this work we present a different approach to speech recognition, which is not based on the HMM but on the recent advances in large margin and kernel methods. We divide the enormous task of speech recognition into small tractable tasks, each of which demonstrates the usefulness of our methods. We address each of these tasks in the same way: first we define the notion of error for the task, then design a discriminative algorithm and provide a theoretical analysis which demonstrates that the algorithm indeed minimizes this error both on the training set and on the test set.

The introduction is organized as follows. We start by describing a typical speech recognition system and formulate its limitations and drawbacks. We deduce that the major problem in speech recognition systems is the acoustic modeling. Subsequently, we give a
short review on large margin and kernel methods and their advantages. Finally, we outline
our proposed framework for acoustic modeling, explaining each of the tasks building the
discriminative speech recognizer and how they fit together.

Throughout the thesis we use the following convention. We denote scalars using lower
case Latin letters (e.g. \(x \)) and vectors using bold face letters (e.g. \(\mathbf{x} \)). A sequence of
elements is designated by a bar (\(\bar{x} \)) and its length is denoted by \(|\bar{x}| \).

1.1 Current State of Speech Recognition

1.1.1 HMM-based Speech Recognition

We start with a description of a typical HMM-based speech recognition system. The basic
notation is depicted in Figure 1.1. Our description follows the classic review of Young [82].
A spoken utterance is converted by a front-end signal processor to a sequence of acoustic
feature vectors, \(\bar{x} = (x_1, x_2, \ldots, x_T) \), where \(x_t \in \mathcal{X} \) and \(\mathcal{X} \subset \mathbb{R}^n \) is the domain the acoustic
vectors. Each vector is a compact representation of the short-time spectrum. Typically,
each vector covers a period of 10 msec and there are approximately \(T = 300 \) acoustic vectors
in a 10 words utterance.

The spoken utterance consists of a sequence of words \(\bar{w} = (w_1, \ldots, w_N) \). Each of the
words belongs to a fixed and known vocabulary \(\mathcal{V} \), that is, \(w_i \in \mathcal{V} \). The task of the ASR is to
predict the most probable word sequence \(\bar{w}' \) given the acoustic signal \(\bar{x} \). Speech recognition
is formulated as a maximum a posteriori (MAP) decoding problem as follows

\[
\bar{w}' = \arg \max_{\bar{w}} P(\bar{w}|\bar{x}) = \arg \max_{\bar{w}} \frac{P(\bar{x}|\bar{w})P(\bar{w})}{P(\bar{x})},
\]

where we used Bayes’ rule to decompose the posterior probability in the last equation. The
term \(P(\bar{x}|\bar{w}) \) is the probability of observing the acoustic vector sequence \(\bar{x} \) given a specified
word sequence \(\bar{w} \) and it is known as the acoustic model. The term \(P(\bar{w}) \) is the probability
of observing a word sequence \(\bar{w} \) and it is known as the language model. The term \(P(\bar{x}) \) can
be disregarded, since it is constant under the max operation.
We now describe the basic HMM decoding process. The process starts with a postulated word sequence \(\bar{w} \). Each word is converted into a sequence of basic spoken units called phones\(^1\) using a pronunciation dictionary. The probability of each phone is estimated by a statistical model called the hidden Markov model (HMM). The probability of the postulated sequence \(P(\bar{x}|\bar{w}) \) is computed by concatenating the models of the phones composing the sequence. The language model computes the a priori word sequence probability \(P(\bar{w}) \). This process is repeated for all possible word sequences, and the most likely sequence is selected.

Each phone is represented by an HMM. The HMM is a statistical model composed of states. Assume that \(Q \) is the set of all states, and let \(\bar{q} \) be a sequence of states, that is \(\bar{q} = (q_1, q_2, \ldots, q_T) \), where \(q_t \in Q \). HMM is defined as a pair of random processes \(\bar{q} \) and \(\bar{x} \), where \(P(q_t|q_1, q_2, \ldots, q_{t-1}) = P(q_t|q_{t-1}) \) and \(P(x_t|x_1, \ldots, x_{t-1}, x_{t+1}, x_T, q_1, \ldots, q_T) = P(x_t|q_t) \). The HMM of each phone is typically composed of three states and a left-to-right topology, as depicted in Figure 1.2.

\(^1\)Phone is a consonant or vowel speech sound. Phoneme is any equivalent set of phones which leave a
Figure 1.2: The basic HMM topology of a phone. Each phone is typically represented with a three state left-to-right HMM. The estimated transition probability between state i and j is denoted as a_{ij}. The estimated output probability of an acoustic vector x_t, given it was emitted from the state i, is denoted by $b_i(x_t)$.

The HMM can be thought of as a generator of acoustic vector sequences. During each time unit (frame), the model can change a state with probability $P(q_t|q_{t-1})$, also known as the transition probability. When a new state is entered, an acoustic vector is emitted with probability $P(x_t|q_t)$, sometimes referred to as the output probability.

In practice the sequence of states is not observable; hence the model is called hidden. The probability of the state sequence \bar{q} given the observation sequence \bar{x} can be found using Bayes’ rule as follows,

$$P(\bar{q}|\bar{x}) = \frac{P(\bar{q}, \bar{x})}{P(\bar{x})},$$

where the joint probability of a vector sequence \bar{x} and a state sequence \bar{q} is calculated simply as a product of the transition probabilities and the output probabilities,

$$P(\bar{x}, \bar{q}) = \prod_{t=1}^{T} P(q_t|q_{t-1}) P(x_t|q_t),$$ \quad (1.2)

where we assumed that q_0 is constrained to be a non-emitting initial state. The probability of the most probable state sequence is found by maximizing $P(\bar{x}, \bar{q})$ over all possible state sequences using the Viterbi algorithm [58].

\footnote{word meaning invariant [1].}
1.1. CURRENT STATE OF SPEECH RECOGNITION

In the training phase, the transition probabilities and the output probabilities are estimated by a procedure known as the Baum-Welch algorithm [3], which is a special case of the expectation-maximization (EM) algorithm [26], when applied to the HMM. This algorithm provides a very efficient procedure to estimate these probabilities iteratively. The parameters of the HMMs are chosen to maximize the probability of the acoustic vector sequence $P(\bar{x})$, and this probability is computed by summing over all possible state sequences efficiently with the forward-backward algorithm [58]. The Baum-Welch algorithm monotonically convergences to local stationary points of the likelihood function.

Contextual effects cause large variations in the way different sounds are produced [82]. Thus, in order to achieve a good discrimination, the HMMs in most speech recognition systems are trained for each different context. The simplest and the most common approach is to use triphones, where every phone has a distinct HMM for every unique pairs of left and right neighbors [82].

Language models are used to estimate the probability of a given sequence of words, $P(\bar{w})$. Most often the n-grams are used as language models. The n-grams estimate the probability of the current word w_k given the preceding N words ($w_{k-N+1}, \ldots, w_{k-1}$). The n-gram probability distribution is directly computed from a text corpus, with no explicit linguistic rules. Other type of language models are also used, but we will not discussed them here.

1.1.2 HMMs limitations

For the past three decades, the HMM is the predominant acoustic model in continuous speech recognition systems [53]. There are good reasons for this. While the HMM is a rather simple model, it provides almost infinite flexibility regarding how it can be used to model acoustic events in continuous speech. In the recent years researchers facilitate this flexibility to improve the recognition performance of their systems. Despite their popularity, HMM-based approaches have several drawbacks — both as a model of the speech signal [53, 82] and as a learning algorithm.

HMMs are inherently not an adequate model for speech. The major drawback of the
HMMs as a speech model is its statistical assumptions. Consider the conditional probability of the acoustic sequence vector given the state sequence

\[
P(\bar{x}|\bar{q}) = \frac{P(\bar{x}, \bar{q})}{P(\bar{q})} = \prod_{t=1}^{T} \frac{P(q_t|q_{t-1}) P(x_t|q_t)}{\prod_{t=1}^{T} P(q_t|q_{t-1})} = \prod_{t=1}^{T} P(x_t|q_t),
\]

where in the second equation we substitute Equation (1.2). The HMM assumes conditional independence of observations given the state sequence. While this assumption is very useful in practice, it physically improbable.

Another limitation of the HMMs concerns the inferred duration of the phones. The state duration model of an HMM is implicitly given by the geometric distribution. The probability of \(d\) consecutive observations in state \(i\) is given by

\[
P(q_{t+1} = j|q_t = i)^{d-1}[1 - P(q_{t+1} = j|q_t = i)].
\]

Since each phone is typically composed of 3 states, the phone length is also given by the geometric distribution. For most physical signals, this exponentially decaying state duration is inappropriate [58].

The inadequacy of the HMMs to model the speech signal is most acute when comparing the output model and the transition model. Consider the logarithmic form of Equation (1.2),

\[
\log P(\bar{x}, \bar{q}) = \sum_{t=1}^{T} \log P(q_t|q_{t-1}) + \sum_{t=1}^{T} \log P(x_t|q_t). \tag{1.3}
\]

The first term models the dynamic and the temporal structure of the signal, while the second term models the output sequence. It is widely known that the likelihood estimation of the HMMs is dominated by the output probabilities, leaving the transition probabilities unused [7, 82].

As a learning algorithm, the HMMs have several drawbacks as well. Recall that the problem of learning (estimating) the model parameters is an optimization problem, where the objective is the likelihood function. The likelihood function is generally not a convex
function of the model parameters. Hence, the Baum-Welch algorithm, which estimates the model parameters, guaranteed convergence to the local stationary points of the likelihood function rather than to its global point [38]. Another drawback of the HMMs is due to the large amount of model parameters needed to be estimated. Namely, the HMMs tend to overfit the training data [29].

Another problem with HMMs is that they do not directly address discriminative tasks and do not minimize the specific loss naturally derived from each task. In the task of phoneme sequence recognition, for example, the Levenshtein distance (or the edit distance) is used to evaluate performance. The HMMs, however, are not trained to minimize the Levenshtein distance between the model-based predicted phoneme sequence and the correct one, but they are merely estimated probabilities of the most likely sequence.

Several variations of HMMs have been proposed to address each or part of these problems [41, 53, 80]. However, since HMMs are inherently not an adequate model for speech, all of these models have their own shortcomings. Moreover, the assumption of forming a Markov process, which inherently imposes that the probability of the current state (part of a phone) is independent of the past given the previous state, is not valid in the case of the speech signal. We would like to note in passing that several other non-HMM-based acoustic models exist, e.g. [27, 33, 83]. These models are not widely used for their propose only partial or very in-efficient solution to the acoustic modeling problem.

In this work we are focus on a new acoustic model for continuous speech. The importance of a good acoustic model is not well understood. Over the years, almost similar efforts have been put into the three major stages of continuous speech recognition, namely, feature extraction, acoustic modeling, and language modeling. While feature extraction and language modeling are based on the most up-to-date techniques, acoustic modeling is considerably behind. This is due to some misconceptions that are not supported by empirical evidence.

One of these misconceptions is that improving language modeling in continuous speech recognition will solve the robustness problem [1]. Language models which are modeled by context processing (i.e., Markov chains and formal grammars) cannot play a role in
recognition until the error rate of the acoustic model is below 50% raw phone error [1]. Below this critical value, the language model does not have enough information to significantly improve performance. In fact, when the error rate of the acoustic model is high, the context becomes the problem.

1.2 Large Margin and Kernel Methods

In this thesis we propose an alternative approach to acoustic modeling for continuous speech recognition that builds upon recent work on discriminative learning algorithms. The advantage of discriminative learning algorithms stems from the fact that the objective function used during the learning phase is tightly coupled with the decision task one needs to perform. In addition, there is both theoretical and empirical evidence that discriminative learning algorithms are likely to outperform generative models for the same task (cf. [20,77]).

One of the best known discriminative large margin algorithms is the support vector machine (SVM). SVM is a binary classifier, which maps input vectors to a higher dimensional space where a maximal separating hyperplane is constructed. The SVM training simultaneously minimizes the empirical classification error and maximizes the geometric margin between the hyperplane and all the training instances. SVM in its basic form has been successfully applied in simple speech applications such as phoneme classification [42,49,68].

The classical SVM algorithm is designed for simple decision tasks such as binary classification and regression. Hence, its exploitation in speech systems so far has been restricted to simple decision tasks such as phoneme classification. Several attempts have been made to apply SVM type techniques to sequence recognition [37] and to speech recognition problems in particular [32,72]. These attempts formulate the HMM as Mercer kernels and hence do not resolve any of the HMM limitations. Our proposed algorithms are based on recent advances in kernel machines and large margin classifiers for complex decision problems and sequences [15,69,74], which in turn build on the pioneering work of Vapnik and colleagues [20,77]. These methods for sequence prediction, and some other works (e.g. [76]), introduce optimization problems which require long run-time and high memory resources,
1.3. **OUTLINE**

and are thus problematic for the large datasets that are typically encountered in speech processing. We propose an alternative approach which uses an efficient iterative algorithm for learning a discriminative phoneme sequence predictor by traversing the training set a single time.

Speech corpora typically contain a very large number of examples. To cope with large amounts of data we devise *online (iterative) algorithms* that are both memory efficient and simple to implement. Our algorithmic solution builds on the pioneering work of Warmuth and colleagues. In particular, we generalize and fuse ideas from [19, 35, 45]. These papers discuss online learning of large-margin classifiers. On each round, the online hypothesis is updated in a manner that complies with margin constraints imposed by the example observed on this round. Along with the margin constraints, the update is required to keep the new classifier fairly close to the previous one. We show that this idea can also be exploited in our setting, resulting in a simple online update which can be used in conjunction with kernel functions. Furthermore, using methods for converting online to batch learning (e.g. [12, 22]), we show that the online algorithm can be used to devise a batch algorithm with good empirical performance.

1.3 **Outline**

The organization of this thesis is as follows. In Chapter 2 we present large-margin algorithms for the task of hierarchical phoneme classification. Phonetic theory of spoken speech embeds the set of phonemes of western languages in a phonetic hierarchy where the phonemes constitute the leaves of the tree while broad phonetic groups, such as vowels and consonants, correspond to internal vertices. Motivated by this phonetic structure we propose a hierarchical model that incorporates the notion of the similarity between the phonemes and between phonetic groups. As in large margin methods, we associate a vector in a high dimensional space with each phoneme or phoneme group in the hierarchy. We call this vector the prototype of the phoneme or the phoneme group, and classify feature vectors according to their similarity to the various prototypes. We relax the requirements of correct
classification to large margin constraints and attempt to find prototypes that comply with these constraints. In the spirit of Bayesian methods, we impose similarity requirements between the prototypes corresponding to adjacent phonemes in the hierarchy. The result is an algorithmic solution that may tolerate minor mistakes, such as predicting a sibling of the correct phoneme, but avoids gross errors, such as predicting a vertex in a completely different part of the tree. The hierarchical phoneme classifier is an important tool in the subsequent tasks of speech-to-phoneme alignment and keyword spotting.

Next, in Chapter 3 we address the speech-to-phoneme alignment problem, that is the proper positioning of a sequence of phonemes in relation to a corresponding continuous speech signal (this problem is also referred to as “forced alignment”). The speech-to-phoneme alignment is an important tool for labeling speech datasets for speech recognition and for training speech recognition systems. Conceptually, the alignment problem is a fundamental problem in speech recognition, for any speech recognition system can be built theoretically using a speech-to-phoneme alignment algorithm simply by evaluating all possible alignments of all possible phoneme sequences, and choosing the phoneme sequence which attains the best confidence. The alignment function we devise is based on mapping the speech signal and its phoneme representation along with the target alignment into an abstract vector-space. Building on techniques used for learning SVMs, our segmentation function distills to a classifier in this vector-space which is aimed at separating correct alignments from incorrect ones. We describe a simple online algorithm for learning the alignment function and discuss its formal properties. We show that the large margin speech-to-phoneme alignment algorithm outperforms the standard HMM method.

In Chapter 4 we present a discriminative algorithm for sequence phoneme recognizer, which aims at minimizing the Levenshtein distance (edit distance) between the model-based predicted phoneme sequence and the correct one. Given a language model, this algorithm can be easily converted to large vocabulary speech recognizer. We discuss this issue in Chapter 6.
In Chapter 5 we present an algorithm for finding a word in a continuous spoken utterance. The algorithm is based on our previous algorithms and it is the first task demonstrating the advantages of discriminative speech recognition. The performance of a keyword spotting system is often measured by the area under the Receiver Operating Characteristics (ROC) curve, and our discriminative keyword spotter aims at maximizing it. Moreover, our algorithm solves directly the keyword spotting problem (rather than using a large vocabulary speech recognizer), and does not estimate any garbage or background model. We show that the discriminative keyword spotting outperforms the standard HMM method.

We conclude the thesis in Chapter 6, where we suggest future work on full blown large vocabulary speech recognition and language modeling.
Chapter 2

Hierarchical Phoneme Classification

2.1 Introduction

Phonemes classification is the task of deciding what is the phonetic identity of a (typically short) speech utterance. Work in speech recognition and in particular phoneme classification typically imposes the assumption that different classification errors are of the same importance. However, since the set of phoneme are embedded in a hierarchical structure some errors are likely to be more tolerable than others. For example, it seems less severe to classify an utterance as the phoneme /oy/ (as in boy) instead of /ow/ (as in boat), than predicting /w/ (as in way) instead of /ow/. Furthermore, often we cannot extended a high-confidence prediction for a given utterance, while still being able to accurately identify the phonetic group of the utterance. In the above example, it might be the enough just to predict the phoneme group back vowel instead of /oy/ or /ow/. We propose and analyze a hierarchal model for classification that imposes a notion of “severity” of prediction errors which is in accordance with a pre-defined hierarchical structure.

Phonetic theory of spoken speech embeds the set of phonemes of western languages in a phonetic hierarchy where the phonemes constitute the leaves of the tree while broad
2.1. INTRODUCTION

phonetic groups, such as vowels and consonants, correspond to internal vertices. Such phonetic trees were described in [25, 59]. Motivated by this phonetic structure we propose a hierarchical model (depicted in Figure 2.1) that incorporates the notion of the similarity (and analogously dissimilarity) between the phonemes and between phonetic groups and employs this notion in the learning procedure we describe and analyze below.

Most of the previous work on phoneme classification sidestepped the hierarchical phonetic structure (see for instance, [14, 62]). Salomon [67] used a hierarchical clustering algorithm for phoneme classification. His algorithm generates a binary tree which is then used for constructing a phonetic classifier that employs multiple binary support vector machines (SVM). However, this construction was designed for efficiency reasons rather than for capturing the hierarchical phonetic structure. The problem of hierarchical classification in machine learning, in particular hierarchical document classification, was addressed by numerous researchers (see for instance [28, 46, 51, 78]). Most previous work on hierarchical classification decoupled the problem into independent classification problems by...
assigning and training a classifier at each internal vertex in the hierarchy. To incorporate
the semantics relayed by the hierarchical structure, few researchers imposed statistical sim-
ilarity constraints between the probabilistic models for adjacent vertices in the hierarchy
(e.g. [51]). In probabilistic settings, statistical similarities can be enforced using techniques
such as back-off estimates [40] and shrinkage [51].

The chapter is organized as follows. In Section 2.2 we formally describe the hierarchical
phoneme classification problem and establish our notation. Section 2.3 constitutes the
algorithmic core of the chapter. In this section we describe and analyze an online algorithm
for hierarchical phoneme classification. In Section 2.4 we briefly describe a conversion of
the online algorithm into a well performing batch algorithm. In Section 2.5 we conclude
the chapter with a series of experiments.

2.2 Problem Setting

Let $\mathcal{X} \subseteq \mathbb{R}^n$ be an acoustic features domain and let \mathcal{P} be a set of phonemes and phoneme
groups. In the hierarchical classification setting \mathcal{P} plays a double role: first, as in traditional
multiclass problems, it encompasses the set of phonemes, namely each feature vector in \mathcal{X} is
associated with a phoneme $v \in \mathcal{P}$. Second, \mathcal{P} defines a set of vertices, i.e., the phonemes and
the phoneme groups, arranged in a rooted tree T. We denote $k = |\mathcal{P}|$, for concreteness and
without loss of generality we represent in this chapter each phoneme and phoneme group
by an integer number, rather than by its symbol, i.e., $\mathcal{P} = \{0, \ldots, k-1\}$. We associate the
integer 0 to be the root of T.

For any pair of phonemes $u, v \in \mathcal{P}$, let $\gamma(u, v)$ denote their distance in the tree. That
is, $\gamma(u, v)$ is defined to be the number of edges along the (unique) path from u to v in T.
The distance function $\gamma(\cdot, \cdot)$ is in fact a metric over \mathcal{P} since it is a non-negative function,
$\gamma(v, v) = 0$, $\gamma(u, v) = \gamma(v, u)$ and the triangle inequality always holds with equality. As
stated above, different classification errors incur different levels of penalty, and in our model
this penalty is defined by the tree distance $\gamma(u, v)$. We therefore say that the tree induced
error incurred by predicting the phoneme or the phoneme group v when the correct phoneme
2.2. PROBLEM SETTING

We receive a training set $S = \{(x_i, p_i)\}_{i=1}^m$ of feature vector-phoneme pairs, where each $x_i \in \mathcal{X}$ and each $p_i \in \mathcal{P}$. Our goal is to learn a classification function $f : \mathcal{X} \rightarrow \mathcal{P}$ which attains a small tree induced error. We focus on classifiers that are of the following form: each phoneme $v \in \mathcal{P}$ has a matching prototype $W^v \in \mathbb{R}^n$, where W^0 is fixed to be the zero vector and every other prototype can be any vector in \mathbb{R}^n. The classifier f makes its predictions according to the following rule,

$$f(x) = \arg\max_{v \in \mathcal{P}} W^v \cdot x.$$ \hfill (2.1)

The task of learning f is reduced to learning W^1, \ldots, W^{k-1}.

For every phoneme or phoneme group other than the tree root $v \in \{\mathcal{P} \setminus 0\}$, we denote by $A(v)$ the parent of v in the tree. Put another way, $A(v)$ is the vertex adjacent to v which is closer to the tree root 0. We also define $A^{(i)}(v)$ to be the ith ancestor of v (if such an ancestor exists). Formally, $A^{(i)}(v)$ is defined recursively as follows,

$$A^{(0)}(v) = v \quad \text{and} \quad A^{(i)}(v) = A(A^{(i-1)}(v)).$$

For each phoneme or phoneme group $v \in \mathcal{P}$, define $T(v)$ to be the set of phoneme groups along the path from 0 (the tree root) to v,

$$T(v) = \left\{ u \in \mathcal{P} : \exists i \ u = A^{(i)}(v) \right\}.$$ \hfill (2.2)

For technical reasons discussed shortly, we prefer not to deal directly with the set of prototypes W^0, \ldots, W^{k-1} but rather with the difference between each prototype and the prototype of its parent. Formally, define w^0 to be the zero vector in \mathbb{R}^n and for each phoneme or phoneme group $v \in \mathcal{P} \setminus 0$, let $w^v = W^v - W^{A(v)}$. Each prototype now decomposes to the sum

$$W^v = \sum_{u \in T(v)} w^u.$$ \hfill (2.2)
The classifier f can be defined in two equivalent ways: by setting $\{W^v\}_{v \in P}$ and using Equation (2.1), or by setting $\{w^v\}_{v \in P}$ and using Equation (2.2) in conjunction with Equation (2.1). Throughout this chapter, we often use $\{w^v\}_{v \in P}$ as a synonym for the classification function f. As a design choice, our algorithms require that adjacent vertices in the phonetic tree have similar prototypes. The benefit of representing each prototype $\{W^v\}_{v \in P}$ as a sum of vectors from $\{w^v\}_{v \in P}$ is that adjacent prototypes W^v and $W^{A(v)}$ can be kept close by simply keeping $w^v = W^v - W^{A(v)}$ small. Section 2.3 and Section 2.4 address the task of learning the set $\{w^v\}_{v \in P}$ from supervised data.

2.3 An Online Algorithm

In this section we derive and analyze an efficient online learning algorithm for the hierarchical phoneme classification problem. In online settings, learning takes place in rounds. On round i, a feature vector, denoted x_i, is presented to the learning algorithm. The algorithm maintains a set of prototypes which is constantly updated in accordance with the quality of its predictions. We denote the set of prototypes used to extend the prediction on round i by $\{w^v_i\}_{v \in P}$. Therefore, the predicted phoneme or phoneme group of the algorithm for x_i is,

$$p'_i = \arg\max_{v \in P} W^v_i \cdot x_i = \arg\max_{v \in P} \sum_{u \in T(v)} w^u_i \cdot x_i.$$ \hspace{1cm} (2.3)

Then, the correct phoneme p_i is revealed and the algorithm suffers an instantaneous error. The error that we employ here is the tree induced error. Using the notation above, the error on round i equals $\gamma(p_i, p'_i)$.

Our analysis, as well as the motivation for the online update that we derive below, assumes that there exists a set of prototypes $\{\omega^v\}_{v \in P}$ such that for every feature vector-phoneme pair (x_i, p_i) and every $r \neq p_i$ it holds that,

$$\sum_{v \in T(p_i)} \omega^v \cdot x_i - \sum_{u \in T(r)} \omega^u \cdot x_i \geq \sqrt{\gamma(p_i, r)}.$$ \hspace{1cm} (2.4)
The above difference between the projection onto the prototype corresponding to the correct phoneme and any other prototype is a generalization of the notion of margin employed by multiclass problems in machine learning literature [81]. Put informally, we require that the margin between the correct and each of the incorrect phonemes and phoneme groups be at least the square-root of the tree-based distance between them. The goal of the algorithm is to find a set of prototypes which fulfills the margin requirement of Equation (2.4) while incurring a minimal tree-induced error until such a set is found. However, the tree-induced error is a combinatorial quantity and is thus difficult to minimize directly. We instead use a construction commonly used in large margin classifiers and employ the the convex hinge-loss function

$$\ell \left(\{ w_v^i \}, x_i, p_i \right) = \left[\sum_{v \in T(p_i')} w_v^i \cdot x_i - \sum_{v \in T(p_i)} w_v^i \cdot x_i + \sqrt{\gamma(p_i, p_i')} \right]_+,$$

(2.5)

where $[z]_+ = \max\{z, 0\}$. In the sequel we show that $\ell^2 \left(\{ w_v^i \}, x_i, p_i \right)$ upper bounds $\gamma(p_i, p_i')$ and use this fact to attain a bound on $\sum_{i=1}^m \gamma(p_i, p_i')$.

The online algorithm belongs to the family of conservative online algorithms, which update their classification rules only on rounds on which prediction mistakes are made. Let us therefore assume that there was a prediction mistake on round i. We would like to modify the set of vectors $\{ w_v^i \}$ so as to satisfy the margin constraints imposed by the ith example. One possible approach is to simply find a set of vectors that solves the constraints in Equation (2.4) (Such a set must exist since we assume that there exists a set $\{ \omega_v^i \}$ which satisfies the margin requirements for all of the examples.) There are however two caveats in such a greedy approach. The first is that by setting the new set of prototypes to be an arbitrary solution to the constraints imposed by the most recent example we are in danger of forgetting what has been learned thus far. The second, rather technical, complicating factor is that there is no simple analytical solution to Equation (2.4). We therefore introduce a simple constrained optimization problem. The objective function of this optimization problem ensures that the new set $\{ w_v^{i+1} \}$ is kept close to the current set while the constraints ensure that the margin requirement for the pair (p_i, p_i') is fulfilled by
the new vectors. Formally, the new set of vectors is the solution to the following problem,

\[
\min_{\{w^v\}} \frac{1}{2} \sum_{v \in \mathcal{P}} \|w^v - w^v_i\|^2 \tag{2.6}
\]

s.t. \[\sum_{v \in \mathcal{T}(p_i)} w^v \cdot x_i - \sum_{u \in \mathcal{T}(p'_i)} w^u \cdot x_i \geq \sqrt{\gamma(p_i, p'_i)}. \]

First, note that any vector \(w^v\) corresponding to a vertex \(v\) that does not belong to neither \(\mathcal{T}(p_i)\) nor \(\mathcal{T}(p'_i)\) does not change due to the objective function in Equation (2.6), hence, \(w^v_{i+1} = w^v_i\).

Second, note that if \(v \in \mathcal{T}(p_i) \cap \mathcal{T}(p'_i)\) then the contribution of the \(w^v\) cancels out. Thus, for this case as well we get that \(w^v_{i+1} = w^v_i\). In summary, the vectors that we need to actually update correspond to the vertices in the set \(\mathcal{T}(p_i) \Delta \mathcal{T}(p'_i)\) where \(\Delta\) designates the symmetric difference of sets (see also Figure 2.2).

To find the solution to Equation (2.6) we introduce a Lagrange multiplier \(\alpha_i\), and formulate the optimization problem in the form of a Lagrangian. We set the derivative of the Lagrangian w.r.t. \(\{w^v\}\) to zero and get,

\[
w^v_{i+1} = w^v_i + \alpha_i x_i \quad v \in \mathcal{T}(p_i) \setminus \mathcal{T}(p'_i) \tag{2.7}
\]

\[
w^v_{i+1} = w^v_i - \alpha_i x_i \quad v \in \mathcal{T}(p'_i) \setminus \mathcal{T}(p_i) . \tag{2.8}
\]

Due to KKT conditions [8] the constraint of Equation (2.6) is binding at the optimum we get that,

\[
\sum_{v \in \mathcal{T}(p_i)} (w^v_i + \alpha_i x_i) \cdot x_i = \sum_{v \in \mathcal{T}(p'_i)} (w^v_i - \alpha_i x_i) \cdot x_i + \sqrt{\gamma(p_i, p'_i)}.
\]

Rearranging terms in the above equation and using the definition of the loss from Equation (2.5) we get that,

\[
\alpha_i \|x_i\|^2 |\mathcal{T}(p_i) \Delta \mathcal{T}(p'_i)| = \ell(\{w^v_i\}, x_i, p_i) .
\]
2.3. AN ONLINE ALGORITHM

Input: training set \(S = \{ (x_i, p_i) \}_{i=1}^m \); tree \(T \)

Initialize: \(\forall v \in P : w^1_v = 0 \)

For \(i = 1, \ldots, m \)

Predict: phoneme or phoneme group: \(p'_i = \arg \max_{v \in P} \sum_{u \in T(v)} w^u_v \cdot x_i \)

Set:

\[
\alpha_i = \max \left\{ \frac{\sum_{v \in T(p'_i)} w^u_v \cdot x_i - \sum_{v \in T(p_i)} w^u_v \cdot x_i + \sqrt{\gamma(p_i, p'_i)} \| x_i \|^2}{\gamma(p_i, p'_i) \| x_i \|^2} \right\}
\]

Update:

\[
\begin{align*}
w^v_{i+1} &= w^v_i + \alpha_i x_i & v \in T(p_i) \setminus T(p'_i) \\
w^v_{i+1} &= w^v_i - \alpha_i x_i & v \in T(p'_i) \setminus T(p_i)
\end{align*}
\]

Figure 2.3: Online hierarchical phoneme classification algorithm.

Finally, noting that the cardinality of \(T(p_i) \setminus T(p'_i) \) is equal to \(\gamma(p_i, p'_i) \) we get that,

\[
\alpha_i = \frac{\ell(\{ w^v_i \}, x_i, p_i)}{\gamma(p_i, p'_i) \| x_i \|^2}
\] (2.9)

The pseudo code of the online algorithm is given in Figure 2.3. The following theorem implies that the cumulative loss suffered by the online algorithm is bounded as long as there exists a hierarchical phoneme classifier which fulfills the margin requirements on all of the examples.

Theorem 2.3.1. Let \(\{(x_i, p_i)\}_{i=1}^m \) be a sequence of examples where \(x_i \in \mathcal{X} \subseteq \mathbb{R}^n \) and \(p_i \in \mathcal{P} \). Assume there exists a set \(\{ \omega^v : \forall v \in \mathcal{P} \} \) that satisfies Equation (2.4) for all \(1 \leq i \leq m \). Then, the following bound holds,

\[
\sum_{i=1}^m \ell^2(\{ w^v_i \}, x_i, p_i) \leq \sum_{v \in \mathcal{P}} \| \omega^v \|^2 \gamma_{\text{max}} R^2
\]

where for all \(i \), \(\| x_i \| \leq R \) and \(\gamma(p_i, p'_i) \leq \gamma_{\text{max}} \).

Proof. As a technical tool, we denote by \(\bar{\omega} \) the concatenation of the vectors in \(\{ \omega^v \} \), \(\bar{\omega} = (\omega^0, \ldots, \omega^{k-1}) \) and similarly \(\bar{w}_i = (w^0_i, \ldots, w^{k-1}_i) \) for \(i \geq 1 \). We denote by \(\delta_i \) the difference
between the squared distance \bar{w}_i from $\bar{\omega}$ and the squared distance of \bar{w}_{i+1} from $\bar{\omega}$,

$$\delta_i = \|\bar{w}_i - \bar{\omega}\|^2 - \|\bar{w}_{i+1} - \bar{\omega}\|^2.$$

We now derive upper and lower bounds on $\sum_{i=1}^m \delta_i$. First, note that by summing over i we obtain,

$$\sum_{i=1}^m \delta_i = \sum_{i=1}^m \|\bar{w}_i - \bar{\omega}\|^2 - \|\bar{w}_{i+1} - \bar{\omega}\|^2$$
$$= \|\bar{w}_1 - \bar{\omega}\|^2 - \|\bar{w}_m - \bar{\omega}\|^2$$
$$\leq \|\bar{w}_1 - \bar{\omega}\|^2.$$

Our initialization sets $\bar{w}_1 = 0$ and thus we get,

$$\sum_{i=1}^m \delta_i \leq \|\bar{\omega}\|^2 = \sum_{v \in P} \|\omega_v\|^2.$$

(2.10)

This provides the upper bound on $\sum_i \delta_i$. We next derive a lower bound on each δ_i. The minimizer of the problem defined by Equation (2.6) is obtained by projecting $\{w_v^v\}$ onto the linear constraint corresponding to our margin requirement. The result is a new set $\{w_v^{v+1}\}$ which in the above notation can be written as the vector \bar{w}_{i+1}. A well known result (see for instance [11], Theorem 2.4.1) states that this vector satisfies the following inequality,

$$\|\bar{w}_i - \bar{\omega}\|^2 - \|\bar{w}_{i+1} - \bar{\omega}\|^2 \geq \|\bar{w}_i - \bar{w}_{i+1}\|^2.$$

Hence, we get that $\delta_i \geq \|\bar{w}_i - \bar{w}_{i+1}\|^2$. We can now take into account that w_v^v is updated if and only if $v \in T(p_i) \Delta T(p'_i)$ to get that,

$$\|\bar{w}_i - \bar{w}_{i+1}\|^2 = \sum_{v \in P} \|w_v^v - w_v^{v+1}\|^2$$
$$= \sum_{v \in T(p_i) \Delta T(p'_i)} \|w_v^v - w_v^{v+1}\|^2.$$
Plugging Equations (2.7-2.8) into the above equation, we get

\[\sum_{v \in T(p_i) \Delta T'(p'_i)} \| w_v^i - w_{i+1}^v \|^2 = \sum_{v \in T(p_i) \Delta T'(p'_i)} \alpha_i^2 \| x_i \|^2 \]

\[= |T(p_i) \Delta T'(p'_i)| \alpha_i^2 \| x_i \|^2 \]

\[= \gamma(p_i, p'_i) \alpha_i^2 \| x_i \|^2. \]

We now use the definition of \(\alpha_i \) from Equation (2.9) to obtain a lower bound on \(\delta_i \),

\[\delta_i \geq \frac{\ell^2 (\{w_v^i\}, x_i, p_i)}{\gamma(p_i, p'_i) \| x_i \|^2}. \]

Using the assumptions \(\| x_i \| \leq R \) and \(\gamma(p_i, p'_i) \leq \gamma_{\text{max}} \) we can further bound \(\delta_i \) and write,

\[\delta_i \geq \frac{\ell^2 (\{w_v^i\}, x_i, p_i)}{\gamma_{\text{max}} R^2}. \]

Now, summing over all \(i \) and comparing the lower bound given above with the upper bound of Equation (2.10) we get,

\[\sum_{t=1}^{m} \frac{\ell^2 (\{w_v^i\}, x_i, p_i)}{\gamma_{\text{max}} R^2} \leq \sum_{t=1}^{m} \delta_i \leq \sum_{v \in P} \| \omega_v^i \|^2. \]

Multiplying both sides of the inequality above by \(\gamma_{\text{max}} R^2 \) gives the desired bound. \(\square \)

The loss bound of Theorem 2.3.1 can be straightforwardly translated into a bound on the tree-induced error as follows. Note that whenever a prediction error occurs \((p_i \neq p'_i) \), then \(\sum_{v \in T(p_i)} w_v^i \cdot x_i \geq \sum_{v \in T(p_i)} w_v^i \cdot x_i \). Thus, the hinge-loss defined by Equation (2.5) is greater than \(\sqrt{\gamma(p_i, p'_i)} \). Since we suffer a loss only on rounds were prediction errors were made, we get the following corollary.

Corollary 2.3.2. Under the conditions of Theorem 2.3.1 the following bound on the
cumulative tree-induced error holds,
\[
\sum_{t=1}^{m} \gamma(p_i, p'_i) \leq \sum_{v \in P} \|\omega_v\|^2 \gamma_{\max} R^2.
\] (2.11)

To conclude the algorithmic part of the chapter, we note that Mercer kernels can be easily incorporated into our algorithm. First, rewrite the update as \(w_{i+1}^v = w_i^v + \alpha_i^v x_i \) where,
\[
\alpha_i^v = \begin{cases}
\alpha_i & v \in T(p_i) \setminus T(p'_i) \\
-\alpha_i & v \in T(p'_i) \setminus T(p_i) \\
0 & \text{otherwise}
\end{cases}
\]

Using this notation, the resulting hierarchical classifier can be rewritten as,
\[
f(x) = \arg\max_{v \in P} \sum_{u \in T(v)} w_i^u \cdot x
\] (2.12)
\[
= \arg\max_{v \in P} \sum_{u \in T(v)} \sum_{i=1}^{m} \alpha_i^u x_i \cdot x
\] (2.13)

We can replace the inner-products in Equation (2.13) with a general kernel operator \(K(\cdot, \cdot) \) that satisfies Mercer’s conditions \([77]\). It remains to show that \(\alpha_i^v \) can be computed based on kernel operations whenever \(\alpha_i^v
eq 0 \). To see this, note that we can rewrite \(\alpha_i \) from Equation (2.9) as
\[
\alpha_i = \frac{\left[\sum_{v \in T(p'_i)} \sum_{j<i} \alpha_j^v K(x_j, x_i) - \sum_{v \in T(p_i)} \sum_{j<i} \alpha_j^v K(x_j, x_i) + \gamma(p_i, p'_i) \right]}{\gamma(p_i, p'_i) K(x_i, x_i)}
\] (2.14)

2.4 Batch Learning and Generalization

In the previous section we presented an online algorithm for hierarchical phoneme classification. However, many common hierarchical multiclass tasks fit more naturally in the batch learning setting, where the entire training set \(S = \{(x_i, p_i)\}_{i=1}^{m} \) is available to the learning algorithm in advance. As before, the performance of a classifier \(f \) on a given example \((x, p)\)
is evaluated with respect to the tree-induced error $\gamma(p, f(x))$. In contrast to online learning, where no assumptions are made on the distribution of examples, we now assume that the examples are independently sampled from a distribution Q over $\mathcal{X} \times \mathcal{P}$. Our goal is to use S to obtain a hierarchical classifier f which attains a low expected tree-induced error, $\mathbb{E}[\gamma(p, f(x))]$, where expectation is taken over the random selection of examples from Q.

Perhaps the simplest idea is to use the online algorithm of Section 2.3 as a batch algorithm by applying it to the training set S in an arbitrary order and defining f to be the last classifier obtained by this process. The resulting classifier is the one defined by the vector set $\{w^v_{m+1}\}_{v \in \mathcal{P}}$. In practice, this idea works reasonably well, as demonstrated by our experiments (Section 2.5). However, a variation of this idea yields a significantly better classifier with an accompanying generalization bound. First, we slightly modify the online algorithm by selecting \hat{p}_i to be the phoneme (or phoneme group) which maximizes Equation (2.5) instead of selecting \hat{p}_i according to Equation (2.3). In other words, the modified algorithm predicts the phoneme (or phoneme group) which causes it to suffer the greatest loss. This modification is possible since in the batch setting p_i is available to us before \hat{p}_i is generated. It can be easily verified that Theorem 2.3.1 and its proof still hold after this modification. S is presented to the modified online algorithm, which generates the set of vectors $\{w^v_i\}_{i,v}$. Now, for every $v \in \mathcal{P}$ define

$$w^v = \frac{1}{m+1} \sum_{i=1}^{m+1} w^v_i,$$

(2.15)

and let f be the multiclass classifier defined by $\{w^v\}_{v \in \mathcal{P}}$ with the standard prediction rule in Equation (2.3). We have set the prototype for phoneme v to be the average over all prototypes generated by the online algorithm for phoneme v. We name this approach the *batch* algorithm. For a general discussion on taking the average online hypothesis see [12].

In our analysis below, we use Equation (2.15) to define the classifier generated by the batch algorithm. However, an equivalent definition can be given which is much easier to implement in practice. As stated in the previous section, each vector w_i^v can be represented
in dual form by
\[w^v_i = \sum_{j=1}^{i} \alpha^v_j x_j . \tag{2.16} \]

As a result, each of the vectors in \(\{ w^v \}_{v \in P} \) can also be represented in dual form by
\[w^v = \frac{1}{m+1} \sum_{i=1}^{m+1} (m+2-i) \alpha^v_i x_i \cdot x. \tag{2.17} \]

Therefore, the output of the batch algorithm becomes
\[f(x) = \arg \max_{v \in P} \sum_{u \in T(v)} \sum_{i=1}^{m+1} (m+2-i) \alpha^v_i x_i \cdot x. \]

Theorem 2.4.1. Let \(S = \{(x_i, p_i)\}_{i=1}^m \) be a training set sampled i.i.d. from the distribution \(Q \). Let \(\{ w^v \}_{v \in P} \) be the vectors obtained by applying batch algorithm to \(S \), and let \(f \) denote the classifier they define. Assume there exist \(\{ \omega^v \}_{v \in P} \) that define a classifier \(f^\ast \) which attains zero loss on \(S \). Furthermore, assume that \(R, B \) and \(\gamma_{\text{max}} \) are constants such that \(\|x\| \leq R \) for all \(x \in X \), \(\|\omega^v\| \leq B \) for all \(v \in P \), \(\gamma(\cdot, \cdot) \) is bounded by \(\gamma_{\text{max}} \). Then with probability of at least \(1 - \delta \),
\[\mathbb{E}_{(x,p) \sim Q}[\gamma(p, f(x))] \leq \frac{\mathcal{L} + \lambda}{m+1} + \lambda \sqrt{\frac{2 \log(1/\delta)}{m}} , \]

where \(\mathcal{L} = \sum_{i=1}^{m} \ell^2(\{w^v_i\}, x_i, p_i) \) and \(\lambda = kB^2 R^2 \gamma_{\text{max}} \).

Proof. For any example \((x, p)\) it holds that \(\gamma(p, f(x)) \leq \ell^2(\{w^v\}, x, p) \), as discussed in the previous section. Using this fact, it suffices to prove a bound on \(\mathbb{E}[\ell^2(\{w^v\}, x, p)] \) to prove the theorem. By definition, \(\ell^2(\{w^v\}, x, p) \) equals
\[\left[\sum_{v \in T(f(x))} w^v \cdot x - \sum_{v \in T(p)} w^v \cdot x + \sqrt{\gamma(p, f(x))} \right]^2. \]
2.4. \textit{Batch Learning and Generalization}

By construction, \(w^v = \frac{1}{m+1} \sum_{i=1}^{m+1} w_i^v \). Therefore this loss can be rewritten as

\[
\left[\frac{1}{m+1} \sum_{i=1}^{m+1} \left(\sum_{v \in T(f(x))} w_i^v - \sum_{v \in T(p)} w_i^v \right) \cdot x + C \right]^2,
\]

where \(C = \sqrt{\gamma(p, f(x))} \). Using the convexity of the function \(g(a) = [a + C]^2 \) together with Jensen’s inequality, we can upper bound the above by

\[
\frac{1}{m+1} \sum_{i=1}^{m+1} \left[\sum_{v \in T(f(x))} w_i^v \cdot x - \sum_{v \in T(p)} w_i^v \cdot x + C \right]^2.
\]

Let \(\ell_{\text{max}}(\{w^v\}, x, p) \) denote the maximum of Equation (2.5) over all \(\hat{p} \in \mathcal{P} \). We now use \(\ell_{\text{max}} \) to bound each of the summands in the expression above and obtain the bound,

\[
\ell^2(\{w^v\}, x, p) \leq \frac{1}{m+1} \sum_{i=1}^{m+1} \ell_{\text{max}}^2(\{w_i^v\}, x, p).
\]

Taking expectations on both sides of this inequality, we get

\[
E\left[\ell^2(\{w^v\}, x, p) \right] \leq \frac{1}{m+1} \sum_{i=1}^{m+1} E\left[\ell_{\text{max}}^2(\{w_i^v\}, x, y) \right]. \tag{2.18}
\]

Recall that the modified online algorithm suffers a loss of \(\ell_{\text{max}}(\{w^v\}, x_i, p_i) \) on round \(i \). As a direct consequence of Azuma’s large deviation bound which gives a concentration result for the values of martingales that have bounded differences (see for instance Theorem 1 in [12]), the sum \(\sum_{i=1}^{m} E\left[\ell_{\text{max}}^2(\{w_i^v\}, x, p) \right] \) is bounded above with probability of at least \(1 - \delta \) by,

\[
\mathcal{L} + m\lambda \sqrt{\frac{2\log(1/\delta)}{m}},
\]

As previously stated, Theorem 2.3.1 also holds for the modified online update. It can
therefore be used to obtain the bound $\ell^2_{\text{max}}(\{w^v_{m+1}\}, x, p) \leq \lambda$ and to conclude that,

$$\sum_{i=1}^{m+1} \mathbb{E}\left[\ell^2_{\text{max}}(\{w^v_i\}, x, p)\right] \leq \mathcal{L} + \lambda + m\lambda \sqrt{\frac{2\log(1/\delta)}{m}}.$$

Dividing both sides of the above inequality by $m+1$, we have obtained an upper bound on the right hand side of Equation (2.18), which gives us the desired bound on $\mathbb{E}\left[\ell^2(\{w^v\}, x, p)\right]$.

Theorem 2.4.1 is a data dependent error bound as it depends on \mathcal{L}. We would like to note in passing that a data independent bound on $\mathbb{E}[\gamma(p, f(x))]$ can also be obtained by combining Thm. 2.4.1 with Theorem 2.3.1. As stated above, Theorem 2.3.1 holds for the modified version of the online algorithm described above. The data independent bound is derived by replacing \mathcal{L} in Theorem 2.4.1 with its upper bound given in Theorem 3.5.1.

2.5 Experimental Results

We begin this section with a comparison of the online algorithm and batch algorithm with standard multiclass classifiers which are oblivious to the hierarchical structure of the phoneme set given in Figure 2.1.

The data we used is a subset of the TIMIT acoustic-phonetic dataset, which is a phonetically transcribed corpus of high quality continuous speech spoken by North American speakers [48]. Mel-frequency cepstrum coefficients (MFCC) along with their first and the second derivatives were extracted from the speech in a standard way, based on the ETSI standard for distributed speech recognition [30] and each feature vector was generated from 5 adjacent MFCC vectors (with overlap). The TIMIT corpus is divided into a training set and a test set in such a way that no speakers from the training set appear in the test set (speaker independent). We randomly selected 2000 training features vectors and 500 test feature vectors per each of the 40 phonemes. We normalized the data to have zero mean and unit variance and used an RBF kernel with $\sigma = 0.5$ in all the experiment with this
2.5. EXPERIMENTAL RESULTS

Table 2.1: Online algorithm results.

<table>
<thead>
<tr>
<th>Hierarchy</th>
<th>Tree induced error</th>
<th>Multiclass error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tree</td>
<td>1.64</td>
<td>40.0</td>
</tr>
<tr>
<td>Flat</td>
<td>1.72</td>
<td>39.7</td>
</tr>
</tbody>
</table>

Table 2.2: Batch algorithm results.

<table>
<thead>
<tr>
<th>Hierarchy</th>
<th>Tree induced</th>
<th>Multiclass</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Last Batch</td>
<td>Last Batch</td>
</tr>
<tr>
<td>Tree</td>
<td>1.88 1.30</td>
<td>48.0 40.6</td>
</tr>
<tr>
<td>Flat</td>
<td>2.01 1.41</td>
<td>48.8 41.8</td>
</tr>
<tr>
<td>Greedy</td>
<td>3.22 2.48</td>
<td>73.9 58.2</td>
</tr>
</tbody>
</table>

dataset.

We trained and tested the online and batch versions of our algorithm. To demonstrate the benefits of exploiting the hierarchal structure of the phoneme set given in Figure 2.1, we also trained and evaluated standard multiclass predictors which ignore the structure. These classifiers were trained using the algorithm but with a “flattened” version of the phoneme hierarchy. The (normalized) cumulative tree-induced error and the percentage of multiclass errors for each experiment are summarized in Table 2.1 (online experiments) and Table 2.2 (batch experiments). Rows marked by tree refer to the performance of the algorithm train with knowledge of the hierarchical structure of the phonetic tree, while rows marked by flat refer to the performance of the classifier trained without knowledge of the hierarchy. The results clearly indicate that exploiting the hierarchical structure is beneficial in achieving low tree-induced errors. In all experiments, both online and batch, the hierarchical phoneme classifier achieved lower tree-induced error than its “flattened” counterpart. Furthermore, in most of the experiments the multiclass error of the algorithm is also lower than the error of the corresponding multiclass predictor, although the latter was explicitly trained to minimize the error. This behavior exemplifies that employing a
Figure 2.4: The distribution of the tree induced-error. Each bar corresponds to the difference between the error of the batch algorithm minus the error of a multiclass predictor. The left figure presents the results for the last hypothesis and the right figure presents the results for the batch convergence.

hierarchical phoneme structure may prove useful even when the goal is not necessarily the minimization of some tree-based error.

Further examination of results demonstrates that the hierarchical phoneme classifier tends to tolerate small tree-induced errors while avoiding large ones. In Figure 2.4 we depict the differences between the error rate of the batch algorithm and the error rate of a standard multiclass predictor. Each bar corresponds to a different value of $\gamma(p,p')$, starting from the left with a value of 1 and ending on the right with the largest possible value of $\gamma(p,p')$. It is clear from the figure that the batch algorithm tends to make "small" errors by predicting the parent or a sibling of the correct phoneme. On the other hand the algorithm seldom chooses a phoneme or a phoneme group which is in an entirely different part of the tree, thus avoiding large tree induced errors. In the phoneme classification task, the algorithm seldom extends a prediction p' such that $\gamma(p,p') = 9$ while the errors of the multiclass predictor are uniformly distributed.

We conclude the experiments with a comparison of the hierarchical algorithm with a common construction of hierarchical classifiers (see for instance [46]), where separate classifiers are learned and applied at each internal vertex of the hierarchy independently. To compare the two approaches, we learned a multiclass predictor at each internal vertex
of the tree hierarchy. Each such classifier routes an input feature vector to one of its children. Formally, for each internal vertex v of T we trained a classifier f_v using the training set $S_v = \{(x_i, u_i) | u_i \in T(p_i), v = A(u_i), (x_i, p_i) \in S\}$. Given a test feature vector x, its predicted phoneme is the leaf p' such that for each $u \in T(p')$ and its parent v we have $f_v(x) = u$. In other words, to cast a prediction we start with the root vertex and move towards one of the leaves by progressing from a vertex v to $f_v(x)$. We refer to this hierarchical classification model in Table 2.2 simply as greedy. In all of the experiments, the batch algorithm clearly outperforms greedy. This experiment underscores the usefulness of our approach which makes global decisions in contrast to the local decisions of the greedy construction. Indeed, any single prediction error at any of the vertices along the path to the correct phoneme will impose a global prediction error.
Chapter 3

Speech-to-Phoneme Alignment

3.1 Introduction

Speech-to-phoneme alignment is the task of proper positioning of a sequence of phonemes in relation to a corresponding continuous speech signal. This problem is also referred to as forced alignment. An accurate and fast phoneme-to-speech alignment procedure is a necessary tool for developing speech recognition and text-to-speech systems. Most previous work on phoneme-to-speech alignment has focused on a generative model of the speech signal using hidden Markov models (HMMs). See for example [9,36,75] and the references therein. In this chapter we present a discriminative supervised algorithm for speech-to-phoneme alignment. The alignment problem is more involved than the phoneme classification problem introduced in the previous chapter, since we need to predict a sequence of phoneme start times rather than a single number.

This chapter is organized as follows. In Section 3.2 we formally introduce the general alignment problem. In our algorithm we use a cost function of predicting incorrect timing sequence. This function is defined in Section 3.3. In Section 3.4 we describe a large margin approach for the alignment problem. Our specific learning algorithm is described and analyzed in Section 3.5. The evaluation of the alignment function and the learning algorithm are both based on an optimization problem for which we give an efficient dynamic
3.2. **Problem Setting**

In this section we formally describe the speech-to-phoneme alignment problem. In the alignment problem, we are given a speech utterance along with a phonetic representation of the utterance. Our goal is to generate an alignment between the speech signal and the phonetic representation. We denote the domain of the acoustic feature vectors by $\mathcal{X} \subset \mathbb{R}^d$.

The acoustic feature representation of a speech signal is therefore a sequence of vectors $\mathbf{x} = (x_1, \ldots, x_T)$, where $x_t \in \mathcal{X}$ for all $1 \leq t \leq T$. A phonetic representation of an utterance is defined as a string of phoneme symbols. Formally, we denote each phoneme by $p \in \mathcal{P}$, where \mathcal{P} is the set of phoneme symbols. Therefore, a phonetic representation of a speech utterance consists of a sequence of phoneme values $\mathbf{p} = (p_1, \ldots, p_k)$. Note that the number of phonemes clearly varies from one utterance to another and thus k is not fixed. We denote by \mathcal{P}^* (and similarly \mathcal{X}^*) the set of all finite-length sequences over \mathcal{P}. In summary, an alignment input is a pair (\mathbf{x}, \mathbf{p}) where \mathbf{x} is an acoustic representation of the speech signal and \mathbf{p} is a phonetic representation of the same signal. An alignment between the acoustic and phonetic representations of a spoken utterance is a timing sequence $\mathbf{s} = (s_1, \ldots, s_k)$ where $s_i \in \mathbb{N}$ is the start-time (measured as frame number) of phoneme i in the acoustic signal. Each phoneme i therefore starts at frame s_i and ends at frame $s_{i+1} - 1$. An example of the notation described above is depicted in Figure 3.1.

Clearly, there are different ways to pronounce the same utterance. Different speakers have different accents and tend to speak at different rates. Our goal is to learn an alignment function that predicts the true start-times of the phonemes from the speech signal and the phonetic representation.

To motivate our construction, let us take a short detour in order to discuss the common
CHAPTER 3. SPEECH-TO-PHONEME ALIGNMENT

Figure 3.1: A spoken utterance labeled with the sequence of phonemes /p_1 p_2 p_3 p_4/ and its corresponding sequence of start-times (s_1 s_2 s_3 s_4).

generative approaches for phoneme alignment. In the generative paradigm, we assume that the speech signal \(\bar{x} \) is generated from the phoneme sequence \(\bar{p} \) and from the sequence of their start times \(\bar{s} \), based on a probability function \(P(\bar{x}|\bar{p},\bar{s}) \). The maximum posterior prediction is therefore,

\[
\bar{s}' = \arg\max_{\bar{s}} \mathbb{P}(\bar{s}|\bar{x},\bar{p}) = \arg\max_{\bar{s}} \mathbb{P}(\bar{s}|\bar{p})\mathbb{P}(\bar{x}|\bar{p},\bar{s})
\]

where the last equality follows from Bayes rule. Put another way, the predicted \(\bar{s}' \) is based on two probability functions:

I. a prior probability \(\mathbb{P}(\bar{s}|\bar{p}) \).

II. a posterior probability \(\mathbb{P}(\bar{x}|\bar{p},\bar{s}) \).

To facilitate efficient calculation of \(\bar{s}' \), practical generative models assume that the probability functions may be further decomposed into basic probability functions. For example, in the HMM framework it is commonly assumed that, \(\mathbb{P}(\bar{x}|\bar{p},\bar{s}) = \prod_i \prod_t \mathbb{P}(x_t|p_i) \), and that, \(\mathbb{P}(\bar{s}|\bar{p}) = \prod_i \mathbb{P}(\ell_i|\ell_{i-1},p_i) \), where \(\ell_i = s_{i+1} - s_i \) is the length of the \(i \)th phoneme according to \(\bar{s} \).

These simplifying assumptions lead to a model which is quite inadequate for purpose of generating natural speech utterances. Yet, the probability of the sequence of phoneme start-times given the speech signal and the phoneme sequences is used as an assessment for
the quality of the alignment sequence. The learning phase of the HMM aims at determining
the basic probability functions from a training set of examples. The learning objective is
to find functions \(P(x_t|p_i) \) and \(P(\ell_i|\ell_{i-1}, p_i) \) such that the likelihood of the training set is
maximized. Given these functions, the prediction \(\tilde{s}' \) is calculated in the so-called inference
phase which can be performed efficiently using dynamic programming.

3.3 Cost and Risk

In this section we describe a discriminative supervised learning approach for learning an
alignment function \(f \) from a training set of examples. Each example in the training set
is composed of a speech utterance, \(\bar{x} \), a sequence of phonemes, \(\bar{p} \), and the true timing
sequence, \(\bar{s} \), i.e., a sequence of start times. Our goal is to find an alignment function, \(f \),
which performs well on the training set as well as on unseen examples. First, we define a
quantitative assessment of alignment functions. Let \((\bar{x}, \bar{p}, \bar{s})\) be an input example and let
\(f \) be an alignment function. We denote by \(\gamma(\bar{s}, f(\bar{x}, \bar{p})) \) the cost of predicting the timing
sequence \(f(\bar{x}, \bar{p}) \) where the true timing sequence is \(\bar{s} \). Formally, \(\gamma : \mathbb{N}^* \times \mathbb{N}^* \to \mathbb{R} \) is a
function that gets two timing sequences (of the same length) and returns a scalar which
is the cost of predicting the second timing sequence where the true timing sequence is the
first. We assume that \(\gamma(\bar{s}, \bar{s}') \geq 0 \) for any two timing sequences \(\bar{s}, \bar{s}' \) and that \(\gamma(\bar{s}, \bar{s}) = 0 \).

An example for a cost function is

\[
\gamma(\bar{s}, \bar{s}') = \frac{1}{|\bar{s}|} \left| \left\{ i : |s_i - s'_i| > \varepsilon \right\} \right|. \tag{3.1}
\]

In words, the above cost is the average number of times the absolute difference between the
predicted timing sequence and the true timing sequence is greater than \(\varepsilon \). Recall that our
goal is to find an alignment function \(f \) that attains small cost on unseen examples. Formally,
let \(Q \) be any (unknown) distribution over the domain of the examples, \(X^* \times E^* \times \mathbb{N}^* \). The
goal of the learning process is to minimize the risk of using the alignment function, defined
as the expected cost of \(f \) on the examples, where the expectation is taken with respect to
the distribution Q,

$$
\text{risk}(f) = \mathbb{E}_{(\bar{x}, \bar{p}, \bar{s}) \sim Q} \left[\gamma(\bar{s}, f(\bar{x}, \bar{p})) \right].
$$

To do so, we assume that the examples of our training set are identically and independently distributed (i.i.d.) according to the distribution Q. Note that we only observe the training examples but we do not know the distribution Q. The training set of examples is used as a restricted window throughout we estimate the quality of alignment functions according to the distribution of unseen examples in the real world, Q. In the next sections we show how to use the training set in order to find an alignment function, f, which achieves a small cost on the training set, and which achieves a small cost on unseen examples with high probability as well.

3.4 A Large Margin Approach for Alignment

In this section we describe a large margin approach for learning an alignment function. Recall that a supervised learning algorithm for alignment receives as input a training set $S = \{(\bar{x}_1, \bar{p}_1, \bar{s}_1), \ldots, (\bar{x}_m, \bar{p}_m, \bar{s}_m)\}$ and returns a alignment function f. To facilitate an efficient algorithm we confine ourselves to a restricted class of alignment functions. Specifically, we assume the existence of a predefined set of base alignment feature functions, $\{\phi_j\}_{j=1}^n$. Each base alignment feature is a function of the form $\phi_j : \mathcal{X}^* \times \mathcal{E}^* \times \mathbb{N}^* \rightarrow \mathbb{R}$. That is, each base alignment feature gets the acoustic representation, \bar{x}, and the sequence of phonemes, \bar{p}, together with a candidate timing sequence, \bar{s}, and returns a scalar which, intuitively, represents the confidence in the suggested timing sequence \bar{s}. We denote by $\phi(\bar{x}, \bar{p}, \bar{s})$ the vector in \mathbb{R}^n whose jth element is $\phi_j(\bar{x}, \bar{p}, \bar{s})$. The alignment functions we use are of the form

$$
f(\bar{x}, \bar{p}) = \arg\max_{\bar{s}} \mathbf{w} \cdot \phi(\bar{x}, \bar{p}, \bar{s}),
$$

where $\mathbf{w} \in \mathbb{R}^n$ is a vector of importance weights that we need to learn. In words, f returns a suggestion for a timing sequence by maximizing a weighted sum of the confidence scores returned by each base alignment function ϕ_j. Since f is parameterized by \mathbf{w} we use the
3.4. A LARGE MARGIN APPROACH FOR ALIGNMENT

notation \(f_w \) for an alignment function \(f \), which is defined as in Equation (3.2). Note that the number of possible timing sequences, \(\bar{s} \), is exponentially large. Nevertheless, as we show later, under mild conditions on the form of the base alignment functions, \(\{ \phi_j \} \), the optimization problem in Equation (3.2) can be efficiently calculated using a dynamic programming procedure.

We now describe a large margin approach for learning the weight vector \(w \), which defines an alignment function as in Equation (3.2), from a training set \(S = \{(\bar{x}_1, \bar{p}_1, \bar{s}_1), \ldots, (\bar{x}_m, \bar{p}_m, \bar{s}_m)\} \) of examples. Similar to the SVM algorithm for binary classification, our approach for choosing the weight vector \(w \) is based on the idea of large-margin separation. However, in our case, timing sequences are not merely correct or incorrect. Instead, the cost function \(\gamma(\bar{s}, \bar{s}') \) is used for assessing the quality of sequences. Therefore, we do not aim at separating correct timing sequences from incorrect ones but rather try to rank the sequences according to their quality. Theoretically, our approach can be described as a two-step procedure: first, we construct a vector \(\phi(\bar{x}_i, \bar{p}_i, \bar{s}_i) \) in the vector space \(\mathbb{R}^n \) based on each instance \((\bar{x}_i, \bar{p}_i)\) in the training set \(S \) and each possible timing sequence \(\bar{s}' \). Second, we find a vector \(w \in \mathbb{R}^n \), such that the projection of vectors onto \(w \) ranks the vectors constructed in the first step above according to their quality. In Figure 3.2 we illustrate three possible timing sequences for the same input \((\bar{x}, \bar{p})\) and their projection onto \(w \). Ideally, for each instance \((\bar{x}_i, \bar{p}_i)\) and for each possible suggested timing sequence \(\bar{s}' \), we would like the following constraint to hold

\[
\mathbf{w} \cdot \phi(\bar{x}_i, \bar{p}_i, \bar{s}_i) - \mathbf{w} \cdot \phi(\bar{x}_i, \bar{p}_i, \bar{s}') \geq \gamma(\bar{s}_i, \bar{s}') . \tag{3.3}
\]

That is, \(w \) should rank the correct timing sequence \(\bar{s}_i \) above any other possible timing sequence \(\bar{s}' \) by at least \(\gamma(\bar{s}_i, \bar{s}') \). We refer to the difference \(\mathbf{w} \cdot \phi(\bar{x}_i, \bar{p}_i, \bar{s}_i) - \mathbf{w} \cdot \phi(\bar{x}_i, \bar{p}_i, \bar{s}') \) as the margin of \(w \) with respect to the sequence \(\bar{s}' \). Note that if the prediction of \(w \) is incorrect then the margin is negative. The constraints in Equation (3.3) imply that the margin of \(w \) with respect to any possible timing sequence \(\bar{s}' \) should be at least the cost.
Figure 3.2: An illustration of the constraints in Equation (3.3). Left: a projection which attains large margin. Middle: a projection which attains a smaller margin. Right: an incorrect projection.
of predicting \tilde{s}' instead of the true timing sequence \tilde{s}_i. An illustration of a vector w with sufficient margin (i.e., satisfies the constraints in Equation (3.3)) is given on the left side of Figure 3.2. The plot on the middle of Figure 3.2 illustrates a vector w, which ranks the different timing sequences correctly, but without the required margin. The plot on the right side of Figure 3.2 illustrates a vector w which does not rank the different timing sequences correctly. Naturally, if w ranks the different possible timing sequences correctly, the margin requirements given in Equation (3.3) can be satisfied by simply multiplying w by a large scalar. The SVM algorithm solves this problem by minimizing $\frac{1}{2}\|w\|^2$ subject to the constraints given in Equation (3.3).

In practice, it might be the case that the constraints given in Equation (3.3) can not be satisfied. To overcome this obstacle, we follow the soft SVM approach and define the following hinge-loss function for alignment,

$$\ell(w; (\tilde{x}_i, \tilde{p}_i, \tilde{s}_i)) = \max_{\tilde{s}'} \left[\gamma(\tilde{s}_i, \tilde{s}') - w \cdot (\phi(\tilde{x}_i, \tilde{p}_i, \tilde{s}_i) - \phi(\tilde{x}_i, \tilde{p}_i, \tilde{s}')) \right]_+, \quad (3.4)$$

where $[a]_+ = \max\{0,a\}$. The hinge loss measures the maximal violation of any of the constraints given in Equation (3.3). The soft SVM approach for alignment is to choose the vector w^*, which minimizes the following optimization problem

$$w^* = \arg\min_w \frac{1}{2}\|w\|^2 + C \sum_{i=1}^m \ell(w; (\tilde{x}_i, \tilde{p}_i, \tilde{s}_i)) \quad , \quad (3.5)$$

where the parameter C serves as a complexity-accuracy trade-off parameter (see [20]). It is easy to verify that the optimization problem in Equation (3.5) is equivalent to the following quadratic optimization problem,

$$\min_{w, \xi \geq 0} \frac{1}{2}\|w\|^2 + C \sum_{i=1}^m \xi_i$$

s.t. $w \cdot \phi(\tilde{x}_i, \tilde{p}_i, \tilde{s}_i) - w \cdot \phi(\tilde{x}_i, \tilde{p}_i, \tilde{s}') \geq \gamma(\tilde{s}_i, \tilde{s}') - \xi_i$ \quad $\forall i, \tilde{s}'$, \quad (3.6)$

where each ξ_i is a non-negative slack variable that indicates the loss of the ith example.
Solving the quadratic optimization problem given in Equation (3.6) is complicated since the number of constraints is exponentially large. Several authors suggested specific algorithms for manipulating the exponential number of constraints [74, 76]. However, these methods are problematic when the size of the dataset is very large since several passes over the data are required. In the next section, we propose an alternative method, which visits each example only once.

3.5 An Iterative Algorithm

In this section we describe an iterative algorithm for learning an alignment function, parameterized by \(w \). Our iterative algorithm first constructs a sequence of weight vectors \(w_1, \ldots, w_m, w_{m+1} \). The first weight vector is set to be the zero vector, \(w_1 = 0 \). On iteration \(i \) of the algorithm, we utilize the \(i \)th example of the training set along with the previous weight vector \(w_i \), for defining the next weight vector \(w_{i+1} \) as follows. Let \(\bar{s}'_i \) be the timing sequence, which corresponds to the highest violated margin constraint of the \(i \)th example according to \(w_i \), that is,

\[
\bar{s}'_i = \arg \max_{\bar{s}} \gamma(\bar{s}, \bar{s}_i) - w_i \cdot (\phi(\bar{x}_i, \bar{p}_i, \bar{s}_i) - \phi(\bar{x}_i, \bar{p}_i, \bar{s})) . \tag{3.7}
\]

In Section 3.6 we provide an algorithm that efficiently calculates the above optimization problem using dynamic programming. We set the next weight vector \(w_{i+1} \) to be the minimizer of the following optimization problem

\[
\min_{w \in \mathbb{R}^n, \xi \geq 0} \frac{1}{2} \|w - w_i\|^2 + C\xi \tag{3.8}
\]

s.t. \(w \cdot \phi(\bar{x}_i, \bar{p}_i, \bar{s}_i) - w \cdot \phi(\bar{x}_i, \bar{p}_i, \bar{s}'_i) \geq \gamma(\bar{s}_i, \bar{s}'_i) - \xi \).

This optimization problem can be thought of as a relaxed version of the SVM optimization problem with two major differences. First, we replace the exponential number of constraints from Equation (3.6) with a single constraint. This constraint is based on the timing sequence \(\bar{s}'_i \) defined in Equation (3.7). Second, we replaced the term \(\|w\|^2 \) in the objective function
of the SVM with the term $\|w - w_i\|^2$. Intuitively, we would like to minimize the loss of w on the current example, i.e., the slack variable ξ, while remaining as close as possible to our previous weight vector w_i.

The solution to the optimization problem in Equation (3.8) has a simple closed form solution,

$$w_{i+1} = w_i + \min \left\{ \frac{\ell_i}{\|\Delta \phi_i\|^2}, C \right\} \cdot \Delta \phi_i,$$

where $\Delta \phi_i = \phi(x_i, p_i, s_i) - \phi(x_i, p_i, s'_i)$ and $\ell_i = \ell(w_i; (x_i, p_i, s_i))$. We now show how this update is derived using standard tools from convex analysis (see for instance [8]). If $\ell_i = 0$ then w_i itself satisfies the constraint in Equation (3.8) and is clearly the optimal solution. If $\ell_i > 0$ we derive these updates by defining the Lagrangian of the respective optimization problem and satisfying the Karush-Khun-Tucker (KKT) conditions [8]. The Lagrangian of the optimization problem is,

$$L(w, \xi, \tau, \lambda) = \frac{1}{2}\|w - w_i\|^2 + C\xi + \tau (\gamma(s_i, s'_i) - \xi - w \cdot \Delta \phi_i) - \lambda \xi,$$ \hspace{1cm} (3.9)

where $\tau \geq 0$ and $\lambda \geq 0$ are Lagrange multipliers. Setting the partial derivatives of L with respect to the elements of w to zero gives,

$$0 = \nabla_w L(w, \xi, \tau, \lambda) = w - w_i - \tau \Delta \phi_i \implies w = w_i + \tau \Delta \phi_i.$$ \hspace{1cm} (3.10)

Differentiating the Lagrangian with respect to ξ and setting that partial derivative to zero gives,

$$0 = \frac{\partial L(w, \xi, \tau, \lambda)}{\partial \xi} = C - \tau - \lambda \implies C = \tau + \lambda.$$ \hspace{1cm} (3.11)

The KKT conditions require λ to be non-negative so we conclude that $\tau \leq C$. We now discuss two possible cases: if $\ell_i/\|\Delta \phi_i\|^2 \leq C$ then we can plugging Equation (3.11) back into Equation (3.9) and get $\tau = \ell_i/\|\Delta \phi_i\|^2$. The other case is when $\ell_i/\|\Delta \phi_i\|^2 > C$. This condition can be rewritten as

$$C\|\Delta \phi_i\|^2 < \gamma(s_i, s'_i) - \xi - w \cdot \Delta \phi_i.$$ \hspace{1cm} (3.12)
We also know that the constraint in Equation (3.8) must hold at the optimum, so $\mathbf{w} \cdot \Delta \phi_i \geq \gamma(s_i, s'_i) - \xi$. Using the explicit form of \mathbf{w} given in Equation (3.10), we can rewrite this constraint as $\mathbf{w}_i \cdot \Delta \phi_i + \tau \|\Delta \phi_i\|^2 \geq \gamma(s_i, s'_i) - \xi$. Combining this inequality with the inequality in Equation (3.12) gives,

$$C\|\Delta \phi_i\|^2 - \tau\|\Delta \phi_i\| < \xi.$$

We now use our earlier conclusion that $\tau \leq C$ to obtain $0 < \xi$. Turning to the KKT complementarity condition, we know that $\xi \lambda = 0$ at the optimum. Having concluded that ξ is strictly positive, we get that λ must equal zero. Plugging $\lambda = 0$ into Equation (3.11) gives $\tau = C$. Summing up, we used the KKT conditions to show that in the case where $\ell_i/\|\Delta \phi_i\|^2 > C$, it is optimal to select $\tau = C$. Folding all of the possible cases into a single equation, we get

$$\tau = \min \left\{ C, \ell_i/\|\Delta \phi_i\|^2 \right\}.$$

(3.13)

The above iterative procedure gives us a sequence of $m+1$ weight vectors, $\mathbf{w}_1, \ldots, \mathbf{w}_{m+1}$. In the sequel we prove that the average performance of this sequence of vectors is comparable to the performance of the SVM solution. Formally, let \mathbf{w}^* be the optimum of the SVM problem given in Equation (3.6). Then, we show in the sequel that setting $C = 1/\sqrt{m}$ gives,

$$\frac{1}{m} \sum_{i=1}^{m} \ell(\mathbf{w}_i; (\tilde{x}_i, \tilde{p}_i, \tilde{s}_i)) \leq \frac{1}{m} \sum_{i=1}^{m} \ell(\mathbf{w}^*; (\tilde{x}_i, \tilde{p}_i, \tilde{s}_i)) + \frac{1}{\sqrt{m}} \left(\|\mathbf{w}^*\|^2 + \frac{1}{2} \right).$$

(3.14)

That is, the average loss of our iterative procedure is upper bounded by the average loss of the SVM solution plus a factor that decays to zero. However, while each prediction of our iterative procedure is calculated using a different weight vector, our learning algorithm is required to output a single weight vector, which defines the output alignment function. To overcome this obstacle, we calculate the average cost of each of the weight vector $\mathbf{w}_1, \ldots, \mathbf{w}_{m+1}$ on a validation set, denoted S_{val}, and choose the one achieving the
3.5. AN ITERATIVE ALGORITHM

Input: training set \(S = \{(\bar{x}_i, \bar{p}_i, \bar{s}_i)\}_{i=1}^m \); validation set \(S_{\text{val}} \); parameter \(C \)

Initialize: \(w_1 = 0 \)

For \(i = 1, \ldots, m \)

Predict: \(\bar{s}_i' = \arg\max_{\bar{s}} \gamma(\bar{s}, \bar{s}_i) - w_i \cdot \phi(\bar{x}_i, \bar{p}_i, \bar{s}_i) + w_i \cdot \phi(\bar{x}_i, \bar{p}_i, \bar{s}) \)

Set: \(\Delta \phi_i = \phi(\bar{x}_i, \bar{p}_i, \bar{s}_i) - \phi(\bar{x}_i, \bar{p}_i, \bar{s}_i') \)

Set: \(\ell_i = \max\{\gamma(\bar{s}_i, \bar{s}_i') - w \cdot \Delta \phi_i, 0\} \)

Update: \(w_{i+1} = w_i + \min\{\ell_i / \|\Delta \phi_i\|^2, C\} \Delta \phi_i \)

Output: The weight vector which achieves the lowest average cost on the validation set \(S_{\text{val}} \).

Figure 3.3: The speech-to-phoneme alignment algorithm.

We now analyze our alignment algorithm from Figure 3.3. Our first theorem shows that the average loss of our alignment algorithm is comparable to the average loss of the SVM solution for the alignment problem defined in Equation (3.6).

Theorem 3.5.1. Let \(S = \{(\bar{x}_1, \bar{p}_1, \bar{s}_1), \ldots, (\bar{x}_m, \bar{p}_m, \bar{s}_m)\} \) be a set of training examples and assume that for all \(i \) and \(\bar{s}' \) we have that \(\|\phi(\bar{x}_i, \bar{p}_i, \bar{s}')\| \leq 1/2 \). Let \(w^* \) be the optimum of the SVM problem given in Equation (3.6). Let \(w_1, \ldots, w_m \) be the sequence of weight vectors obtained by the algorithm in Figure 3.3 given the training set \(S \). Then,

\[
\frac{1}{m} \sum_{i=1}^m \ell(w_i; (\bar{x}_i, \bar{p}_i, \bar{s}_i)) \leq \frac{1}{m} \sum_{i=1}^m \ell(w^*; (\bar{x}_i, \bar{p}_i, \bar{s}_i)) + \frac{1}{Cm} \|w^*\|^2 + \frac{1}{2} C . \tag{3.15}
\]

In particular, if \(C = 1/\sqrt{m} \) then,

\[
\frac{1}{m} \sum_{i=1}^m \ell(w_i; (\bar{x}_i, \bar{p}_i, \bar{s}_i)) \leq \frac{1}{m} \sum_{i=1}^m \ell(w^*; (\bar{x}_i, \bar{p}_i, \bar{s}_i)) + \frac{1}{\sqrt{m}} \left(\|w^*\|^2 + \frac{1}{2}\right) . \tag{3.16}
\]

Proof. Our proof relies on Theorem 2 in [70]. We first construct a sequence of binary
classification examples, \((\Delta \phi_1, +1), \ldots, (\Delta \phi_m, +1)\). For all \(i\) and for all \(w \in \mathbb{R}^n\), define the following classification hinge-loss,

\[
\ell^c_i(w) = \max\{\gamma(s_i, s'_i) - w \cdot \Delta \phi_i, 0\}.
\]

Thm. 2 in [70] implies that the following bound holds for all \(w \in \mathbb{R}^n\),

\[
\sum_{i=1}^{m} \mu(\ell^c_i(w_i)) \leq \frac{1}{C} \|w\|^2 + \sum_{i=1}^{m} \ell^c_i(w),
\]

where,

\[
\mu(a) = \frac{1}{C} \left(\min\{a, C\} \left(a - \frac{1}{2} \min\{a, C\} \right) \right).
\]

Let \(w^*\) denote the optimum of the alignment problem given by Equation (3.6). The bound of Equation (3.17) holds for any \(w\) and in particular for the optimal solution \(w^*\). Furthermore, the definition of \(\ell^c_i\) implies that \(\ell^c_i(w^*) \leq \ell(w^*; (\bar{x}_i, \bar{p}_i, \bar{s}_i))\) and \(\ell^c_i(w_i) = \ell(w_i; (\bar{x}_i, \bar{p}_i, \bar{s}_i))\) for all \(i\). Using the latter two facts in Equation (3.17) gives that,

\[
\sum_{i=1}^{m} \mu(\ell(w_i; (\bar{x}_i, \bar{p}_i, \bar{s}_i))) \leq \frac{1}{C} \|w^*\|^2 + \sum_{i=1}^{m} \ell(w^*; (\bar{x}_i, \bar{p}_i, \bar{s}_i)).
\]

By definition, the function \(\mu\) is bounded below by a linear function, that is, for any \(a > 0\),

\[
\mu(a) \geq a - \frac{1}{2} C.
\]

Using the lower bound with the argument \(\ell(w_i; (\bar{x}_i, \bar{p}_i, \bar{s}_i))\) and summing over \(i\) we obtain,

\[
\sum_{i=1}^{m} \ell(w_i; (\bar{x}_i, \bar{p}_i, \bar{s}_i)) - \frac{1}{2} C m \leq \sum_{i=1}^{m} \mu(\ell(w_i; (\bar{x}_i, \bar{p}_i, \bar{s}_i))).
\]

Combining the above inequality with Equation (3.18) and rearranging terms gives the bound stated in the theorem and concludes our proof.

\[\square\]

The next theorem tells us that the output alignment function of our algorithm is likely
to have good generalization properties.

Theorem 3.5.2. Under the same conditions of Theorem 3.5.1. Assume that the training set \(S \) and the validation set \(S_{\text{val}} \) are both sampled i.i.d. from a distribution \(Q \). Denote by \(m_v \) the size of the validation set. Assume in addition that \(\gamma(\bar{s}, \bar{s}') \leq 1 \) for all \(\bar{s} \) and \(\bar{s}' \). Let \(\mathbf{w} \) be the output weight vector of the algorithm in Figure 3.3 and let \(f_{\mathbf{w}} \) be the corresponding alignment function. Then, with probability of at least \(1 - \delta \) we have that,

\[
\text{risk}(f_{\mathbf{w}}) \leq \frac{1}{m} \sum_{i=1}^{m} \ell(\mathbf{w}^*; (\bar{x}_i, \bar{p}_i, \bar{s}_i)) + \frac{\|\mathbf{w}^*\|^2 + \frac{1}{2} + \sqrt{2 \ln(2/\delta)} \sqrt{\frac{m}{m_v}}}{\sqrt{m}} + \frac{\sqrt{2 \ln(2m/\delta)} \sqrt{m_v}}{m_v}.
\]

(3.19)

Proof. Denote by \(f_1, \ldots, f_m \) the alignment prediction functions corresponding to the weight vectors \(\mathbf{w}_1, \ldots, \mathbf{w}_m \) that are found by the alignment algorithm. Proposition 1 in [12] implies that with probability of at least \(1 - \delta_1 \) the following bound holds,

\[
\frac{1}{m} \sum_{i=1}^{m} \text{risk}(f_i) \leq \frac{1}{m} \sum_{i=1}^{m} \gamma(\bar{s}_i, f_i(\bar{x}_i, \bar{p}_i)) + \frac{\sqrt{2 \ln(1/\delta_1)}}{\sqrt{m}}.
\]

By definition, the hinge-loss \(\ell(\mathbf{w}_i; (\bar{x}_i, \bar{p}_i, \bar{s}_i)) \) bounds from above the loss \(\gamma(\bar{s}_i, f_i(\bar{x}_i, \bar{p}_i)) \). Combining this fact with Theorem 3.5.1 we obtain that,

\[
\frac{1}{m} \sum_{i=1}^{m} \text{risk}(f_i) \leq \frac{1}{m} \sum_{i=1}^{m} \ell(\mathbf{w}_i; (\bar{x}_i, \bar{p}_i, \bar{s}_i)) + \frac{\|\mathbf{w}^*\|^2 + \frac{1}{2} + \sqrt{2 \ln(1/\delta_1)}}{\sqrt{m}}.
\]

(3.20)

The left-hand side of the above inequality upper bounds \(\text{risk}(f_b) \), where \(b = \arg \min_i \text{risk}(f_i) \). Therefore, among the finite set of alignment functions, \(F = \{f_1, \ldots, f_m\} \), there exists at least one alignment function (for instance the function \(f_b \)) whose true risk is bounded above by the right hand side of Equation (3.20). Recall that the output of our algorithm is the alignment function \(f_{\mathbf{w}} \in F \), which minimizes the average cost over the validation set \(S_v \). Applying Hoeffding inequality together with the union bound over \(F \) we conclude that with probability of at least \(1 - \delta_2 \),

\[
\text{risk}(f_{\mathbf{w}}) \leq \text{risk}(f_b) + \sqrt{\frac{2 \ln (m/\delta_2)}{m_v}},
\]

(3.21)
where to remind the reader $m_v = |S_v|$. We have therefore shown that with probability of at least $1 - \delta_1 - \delta_2$ the following inequality holds,

$$
\text{risk}(f_w) \leq \frac{1}{m} \sum_{i=1}^{m} \ell(w^*; (\bar{x}_i, \bar{p}_i, \bar{s}_i)) + \frac{||w^*||^2 + \frac{1}{2} + \sqrt{2 \ln(1/\delta_1)}}{\sqrt{m}} + \frac{\sqrt{2 \ln(m/\delta_2)}}{\sqrt{m_v}}.
$$

Setting $\delta_1 = \delta_2 = \delta/2$ concludes our proof.

As mentioned before, the learning algorithm we present in this chapter share similarities with the SVM method for structured output prediction [74, 76]. Yet, the weight vector resulted by our method is not identical to the one obtained by directly solving the SVM optimization problem. We would like to note in passing that our generalization bound from Theorem 3.5.2 is comparable to generalization bounds derived for the SVM method (see for example [74]). The major advantage of our method over directly solving the SVM problem is its simplicity and efficiency.

3.6 Efficient Evaluation of the Alignment Function

So far we have put aside the problem of evaluation time of the function f given in Equation (3.2). Recall that calculating f requires solving the following optimization problem,

$$
f(\bar{x}, \bar{p}) = \arg\max_{\bar{s}} w \cdot \phi(\bar{x}, \bar{p}, \bar{s}) .
$$

Similarly, we need to find an efficient way for solving the maximization problem given in Equation (3.7). A direct search for the maximizer is not feasible since the number of possible timing sequences, \bar{s}, is exponential in the number of events. Fortunately, as we show below, by imposing a few mild conditions on the structure of the alignment feature functions and on the cost function, γ, both problems can be solved in polynomial time.

We start with the problem of calculating the prediction given in Equation (3.2). For simplicity, we assume that each base feature function, ϕ_j, can be decomposed as follows. Let ψ_j be any function from $\mathcal{X}^* \times \mathcal{E}^* \times \mathbb{N}^3$ into the reals, which can be computed in a
constant time. That is, ψ_j receives as input the signal, \bar{x}, the sequence of events, \bar{p}, and three time points. Additionally, we use the convention $s_0 = 0$ and $s_{|\bar{p}|+1} = T + 1$. Using the above notation, we assume that each ϕ_j can be decomposed to be

$$
\phi_j(\bar{x}, \bar{p}, \bar{s}) = |\bar{s}| - 1 \sum_{i=2}^{|\bar{s}|-1} \psi_j(\bar{x}, \bar{p}, s_{i-1}, s_i, s_{i+1}).
$$

(3.21)

The base alignment functions we derive in later sections for the speech-to-phoneme alignment and for the music-to-score alignment tasks can be decomposed as in Equation (3.21).

We now describe an efficient algorithm for calculating the best timing sequence assuming that ϕ_j can be decomposed as in Equation (3.21). Similar algorithms can be constructed for any base feature functions that can be described as a dynamic Bayesian network ([21, 74]). Given $i \in \{1, \ldots, |\bar{p}|\}$ and two time indices $t, t' \in \{1, \ldots, T\}$, denote by $D(i, t, t')$ the score for the prefix of the events sequence $1, \ldots, i$, assuming that their actual start times are s_1, \ldots, s_i, where $s_i = t'$ and assuming that $s_{i+1} = t$. This variable can be computed efficiently in a similar fashion to the forward variables calculated by the Viterbi procedure in HMMs (see for instance [58]). The pseudo code for computing $D(i, t, t')$ recursively is shown in Figure 3.4. The best sequence of actual start times, \bar{s}', is obtained from the algorithm by saving the intermediate values that maximize each expression in the recursion step. The complexity of the algorithm is $O(|\bar{p}| |\bar{x}|^2)$. However, in practice, we can use the assumption that the maximal length of an event is bounded, $t - t' \leq L$. This assumption reduces the complexity of the algorithm to be $O(|\bar{p}| |\bar{x}| L^2)$. Solving the maximization problem given in Equation (3.7) can be performed in a similar manner as we now briefly describe. Assume that $\gamma(\bar{s}, \bar{s}')$ can be decomposed as follows,

$$
\gamma(\bar{s}, \bar{s}') = \sum_{i=1}^{|\bar{s}|} \hat{\gamma}(s_i, y'_i),
$$

where $\hat{\gamma}$ is any computable function. For example, for the definition of γ given in Equation (3.1) we can set $\hat{\gamma}(s_i, y'_i)$ to be zero if $|s_i - y'_i| \leq \epsilon$ and otherwise $\hat{\gamma}(s_i, y'_i) = 1/|\bar{s}|$.

3.6. EFFICIENT EVALUATION OF THE ALIGNMENT FUNCTION
CHAPTER 3. SPEECH-TO-PHONEME ALIGNMENT

Input: audio signal \bar{x}; sequence of phonemes \bar{p}; weight vector w; maximum phoneme duration L

Initialize: $\forall (1 \leq t \leq L), \ D(0, t, 0) = 0$

Recursion:

For $i = 1, \ldots, |\bar{p}|$

For $t = 1, \ldots, |\bar{x}|$

For $t' = t - L, \ldots, t - 1$

$$D(i, t, t') = \max_{t' - L \leq t'' < t'} D(i - 1, t', t'') + w \cdot \psi(\bar{x}, \bar{p}, t'', t', t)$$

Termination: $D^* = \max_{t'} D(|\bar{p}|, T, t')$

Figure 3.4: An efficient procedure for evaluating the alignment function.

A dynamic programming procedure for calculating Equation (3.7) can be obtained from Figure 3.4 by replacing the recursion definition of $D(i, t, t')$ to

$$D(i, t, t') = \max_{t' - L \leq t'' < t'} D(i - 1, t', t'') + \tilde{\gamma}(s_{i+1}, t) + w \cdot \psi(\bar{x}, \bar{p}, t'', t', t)$$

(3.22)

To conclude this section we discuss the global complexity of our proposed method. In the training phase, our algorithm performs m iterations, one iteration per each training example. At each iteration the algorithm evaluates the alignment function once, updates the alignment function, if needed, and evaluates the new alignment function on a validation set of size m_v. Each evaluation of the alignment function takes an order of $O(|\bar{p}| \ |\bar{x}| L^2)$ operations. Therefore the total complexity of our method becomes $O(m \ m_v \ |\bar{p}| \ |\bar{x}| L^2)$. In practice, however, we can evaluate the updated alignment function only for the last 50 iterations or so, which reduces the global complexity of the algorithm to $O(m \ |\bar{p}| \ |\bar{x}| L^2)$. In all of our experiments, evaluating the alignment function only for the last 50 iterations was found empirically to give sufficient results. Finally, we compare the complexity of our method to the complexity of other algorithms which directly solve the SVM optimization problem given in Equation (3.6). The algorithm given in [74] is based on the SMO algorithm for solving SVM problems. While there is no direct complexity analysis for this algorithm, in practice it usually required at least m^2 iterations which results in a total complexity of
the order $O(m^2 |\bar{p}| \, |\bar{x}| \, L^2)$. The complexity of the algorithm presented in [76] depends on the choice of several parameters. For reasonable choice of these parameters the total complexity is also of the order $O(m^2 |\bar{p}| \, |\bar{x}| \, L^2)$.

3.7 Base Alignment Functions

Recall that our construction is based on a set of base alignment functions, $\{\phi_j\}_{j=1}^n$, which maps an acoustic-phonetic representation of a speech utterance as well as a suggested phoneme start time sequence into an abstract vector-space. All of our base alignment functions are decomposable as in Equation (3.21) and therefore it suffices to describe the functions $\{\psi_j\}$. We start the section by introducing a specific set of base functions, which is highly adequate for the speech-to-phoneme alignment problem. Next, we report experimental results comparing our algorithm to alternative state-of-the-art approaches.

We utilize seven different base alignment functions ($n = 7$). These base functions are used for defining our alignment function $f(\bar{x}, \bar{p})$ as in Equation (3.2).

Our first four base functions aim at capturing transitions between phonemes. These base functions are based on the distance between frames of the acoustical signal at two sides of phoneme boundaries as suggested by a phoneme start time sequence \bar{s}. The distance measure we employ, denoted by d, is the Euclidean distance between feature vectors. Our underlying assumption is that if two frames, x_t and $x_{t'}$, are derived from the same phoneme then the distance $d(x_t, x_{t'})$ should be smaller than if the two frames are derived from different phonemes. Formally, our first 4 base functions are defined as

$$
\psi_j(\bar{x}, \bar{p}, s_{i-1}, s_i, s_{i+1}) = d(x_{s_i-j}, x_{s_{i+1}}), \quad j \in \{1, 2, 3, 4\}.
$$

(3.23)

If \bar{s} is the correct timing sequence then distances between frames across the phoneme change points are likely to be large. In contrast, an incorrect phoneme start time sequence is likely to compare frames from the same phoneme, often resulting small distances. Note that the first four base functions described above only use the start time of the ith phoneme and
does not use the values of \(s_{i-1} \) and \(s_{i+1} \). A schematic illustration of this base function form is depicted in Figure 3.5.

The fifth base function we use is based on the framewise phoneme classifier described in Chapter 2. Formally, for each phoneme \(p \in \mathcal{P} \) and frame \(x \in \mathcal{X} \), there is a confidence, denoted \(g_p(x) \), that the phoneme \(p \) is pronounced in the frame \(x \). The resulting base function measures the cumulative confidence of the complete speech signal given the phoneme sequence and their start-times,

\[
\psi_5(\bar{x}, \bar{p}, s_{i-1}, s_i, s_{i+1}) = \sum_{t=s_i}^{s_{i+1}-1} g_p(x_t).
\] (3.24)

The fifth base function uses both the start time of the \(i \)th phoneme and the \((i+1)\)th phoneme but ignores \(s_{i-1} \). A schematic illustration of the fifth base function is depicted in Figure 3.6.

Our next base function scores timing sequences based on phoneme durations. Unlike the previous base functions, the sixth base function is oblivious to the speech signal itself. It merely examines the length of each phoneme, as suggested by \(\bar{s} \), compared to the typical length required to pronounce this phoneme. Formally,

\[
\psi_6(\bar{x}, \bar{p}, s_{i-1}, s_i, s_{i+1}) = \log \mathcal{N}(s_{i+1} - s_i; \hat{\mu}_p, \hat{\sigma}_p),
\] (3.25)

where \(\mathcal{N} \) is a Normal probability density function with mean \(\hat{\mu}_e \) and standard deviation \(\hat{\sigma}_e \).

In our experiments, we estimated \(\hat{\mu}_e \) and \(\hat{\sigma}_e \) from the entire TIMIT training set, excluding SA1 and SA2 utterances. A schematic illustration of the sixth base function is depicted in Figure 3.7.

Our last base function exploits assumptions on the speaking rate of a speaker. Intuitively, people usually speak in an almost steady rate and therefore a timing sequence in which speech rate is changed abruptly is probably incorrect. Formally, let \(\hat{\mu}_p \) be the average length required to pronounce the \(p \)th phoneme. We denote by \(r_i \) the relative speech rate,
3.7. **BASE ALIGNMENT FUNCTIONS**

Figure 3.5: A schematic description of one of the first four base functions used for speech-to-phoneme alignment. The depicted base function is the sum of the Euclidean distances between the sum of 2 frames before and after any presumed boundary s_i.

Figure 3.6: A schematic description of the fifth base function. This function is the sum of all the scores obtained from a large margin classifier, given a sequence of phonemes and a presumed sequence of start-times.

Figure 3.7: A schematic description of the sixth base function. This function is the sum of the confidences in the duration of each phoneme given its presumed start-time.
$r_i = (s_{i+1} - s_i)/\hat{\mu}_p$. That is, r_i is the ratio between the actual length of phoneme p_i as suggested by \bar{s} to its average length. The relative speech rate presumably changes slowly over time. In practice the speaking rate ratios often differ from speaker to speaker and within a given utterance. We measure the local change in the speaking rate as $(r_i - r_{i-1})^2$ and we define the base function ψ_7 as the local change in the speaking rate,

$$\psi_7(\bar{x}, \bar{p}, s_{i-1}, s_{i}, s_{i+1}) = (r_i - r_{i-1})^2.$$

(3.26)

Note that ψ_7 relies on all three start-times it receives as an input, s_{i-1}, s_i, s_{i+1}.

3.8 Experimental Results

To validate the effectiveness of the proposed approach we performed experiments with the TIMIT corpus. We first divided the training portion of TIMIT (excluding the SA1 and SA2 utterances) into three disjoint parts containing 500, 100 and 3093 utterances, respectively. The first part of the training set was used for learning the functions g_{p_i} (Equation (3.24)), which defines the base function ψ_5. Those functions were learned by the algorithm described in [23] using the MFCC+$\Delta+\Delta\Delta$ acoustic features [30] and a Gaussian kernel ($\sigma = 6.24$ and $C = 5.0$). The second set of 100 utterances formed the validation set needed for our alignment algorithm as described in Section 3.5. Finally, we ran our iterative alignment algorithm on the remaining utterances in the training set. The value of ε in the definition of γ was set to be 1 (i.e., 10 ms).

We evaluated the learned alignment functions on both the core test set and the entire test set of TIMIT. We compare our results to the results reported by Brugnara et al. [9] and the results obtained by Hosom [36]. The results are summarized in Table 3.1. For each tolerance value $\tau \in \{10\, \text{ms}, 20\, \text{ms}, 30\, \text{ms}, 40\, \text{ms}\}$, we counted the number of predictions whose distance to the true boundary, $t = |y_i - y'_i|$, is less than τ. As can be seen in the table our discriminative large margin algorithm is comparable to the best results reported on TIMIT. Furthermore, we found out in our experiments that the same level of accuracy is
Table 3.1: Percentage of correctly positioned phoneme boundaries, given a predefined tolerance on the TIMIT corpus.

<table>
<thead>
<tr>
<th></th>
<th>$t \leq 10\text{ms}$</th>
<th>$t \leq 20\text{ms}$</th>
<th>$t \leq 30\text{ms}$</th>
<th>$t \leq 40\text{ms}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIMIT core test-set</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discrim. Alignment</td>
<td>79.7</td>
<td>92.1</td>
<td>96.2</td>
<td>98.1</td>
</tr>
<tr>
<td>Brugnara et al. [9]</td>
<td>75.3</td>
<td>88.9</td>
<td>94.4</td>
<td>97.1</td>
</tr>
<tr>
<td>Hosom [36]</td>
<td></td>
<td></td>
<td></td>
<td>92.57</td>
</tr>
<tr>
<td>TIMIT entire test-set</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discrim. Alignment</td>
<td>80.0</td>
<td>92.3</td>
<td>96.4</td>
<td>98.2</td>
</tr>
<tr>
<td>Brugnara et al. [9]</td>
<td>74.6</td>
<td>88.8</td>
<td>94.1</td>
<td>96.8</td>
</tr>
</tbody>
</table>

Table 3.2: Percentage of correctly positioned phoneme boundaries for each element of the vector w.

<table>
<thead>
<tr>
<th>w_i</th>
<th>$t \leq 10\text{ms}$</th>
<th>$t \leq 20\text{ms}$</th>
<th>$t \leq 30\text{ms}$</th>
<th>$t \leq 40\text{ms}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_1</td>
<td>7.6</td>
<td>9.9</td>
<td>12.5</td>
<td>15.1</td>
</tr>
<tr>
<td>w_2</td>
<td>8.3</td>
<td>11.8</td>
<td>15.2</td>
<td>18.7</td>
</tr>
<tr>
<td>w_3</td>
<td>8.2</td>
<td>12.3</td>
<td>15.9</td>
<td>19.2</td>
</tr>
<tr>
<td>w_4</td>
<td>6.7</td>
<td>9.4</td>
<td>12.0</td>
<td>14.9</td>
</tr>
<tr>
<td>w_5</td>
<td>77.0</td>
<td>88.8</td>
<td>93.6</td>
<td>95.5</td>
</tr>
<tr>
<td>w_6</td>
<td>12.6</td>
<td>19.2</td>
<td>26.2</td>
<td>33.1</td>
</tr>
<tr>
<td>w_7</td>
<td>12.2</td>
<td>18.3</td>
<td>24.9</td>
<td>31.3</td>
</tr>
<tr>
<td>w</td>
<td>79.7</td>
<td>92.1</td>
<td>96.2</td>
<td>98.1</td>
</tr>
</tbody>
</table>

obtained when using merely the first 50 utterances (rather than the entire 3093 utterances that are available for training).

Our alignment function is based on the weight vector w that determines the linear combination of base alignment functions. It is therefore interesting to observe the specific weights w gives to each of the base alignment functions after the training phase. Since the training algorithm depends on the order of examples in the training set, we ran the algorithm on several random permutations of the same training set and average the resulting weight
vector. The resulting vector was found to be

\[\mathbf{w} = (0.17788, 0.0093, -2.82 \times 10^{-5}, 0.0087, 0.9622, 1.41 \times 10^{-5}, 0.15815) \]. \tag{3.27}

We also calculated the standard deviation of each element of \(\mathbf{w} \). The standard deviation was found to be almost 0 for all the elements of the weight vector, indicating that our training algorithm is rather stable and the resulting weight vector does not depend on the order of examples in the training set. It is also apparent that the weight of the fifth base alignment function is dominant. To remind the reader, the fifth base alignment function corresponds to the frame-wise phoneme classifier. The domination of this feature calls for a comparison between the performance of each single feature to the performance of our method that combined together all the features. In Table 3.2 we report the performance of each of the single base alignment features. We again see that the fifth base alignment function is most effective. The accuracy of this single feature is inferior to the accuracy of our combined method roughly by 3%. When using an alternative single base alignment function, we obtain rather poor results. The advantage of our method is that it combines the features together to obtain the best performing alignment function.
Chapter 4

Phoneme Sequence Recognition

4.1 Introduction

In this chapter we present an algorithm for phoneme sequence recognition. The algorithm which aims at minimizing the Levenshtein distance between the model-based predicted phoneme sequence and the correct one, both on the training set and on the test set. Most previous work on phoneme sequence recognition has focused on hidden markov Models (HMM). See for example [13,27,47] and the references therein. Those models are all based on probability estimations and maximum the sequence likelihood and are not trained to minimize the Levenshtein distance.

This chapter is organized as follows. In Section 4.2 we formally introduce the phoneme sequence recognition problem. Next, our specific learning method is described in Section 4.3. Our method is based on non-linear phoneme recognition function using Mercer kernels. A specific kernel for our task is presented in Section 4.4. We conclude the chapter with experimental results in Section 4.5.

4.2 Problem Setting

In the problem of phoneme sequence recognition, we are given a speech utterance and our goal is to predict the phoneme sequence corresponding to it. We represent a speech signal
as a sequence of acoustic feature-vectors \(\mathbf{x} = (x_1, \ldots, x_T) \), where \(x_t \in \mathcal{X} \) for all \(1 \leq t \leq T \). Each utterance corresponds to a sequence of phoneme symbols. Formally, we denote each phoneme symbol by \(p \in \mathcal{P} \), where \(\mathcal{P} \) is a set of phoneme symbols, and we denote the sequence of phoneme symbols by \(\bar{p} = (p_1, \ldots, p_K) \). Furthermore, we denote by \(s_k \in \mathbb{N} \) the start time of phoneme \(p_k \) (in frame units) and we denote by \(\bar{s} = (s_1, \ldots, s_K) \) the sequence of all phoneme start-times. Naturally, the length of the speech signal and hence the number of phonemes varies from one utterance to another and thus \(T \) and \(K \) are not fixed. We denote by \(\mathcal{P}^* \) (and similarly \(\mathcal{X}^* \) and \(\mathbb{N}^* \)) the set of all finite-length sequences over \(\mathcal{P} \). Our goal is to learn a function \(f \) that predicts the correct phoneme sequence given an acoustic sequence. That is, \(f \) is a function from \(\mathcal{X}^* \) to the set of finite-length sequences over the domain of phoneme symbols, \(\mathcal{P}^* \). We also refer to \(f \) as a phoneme sequence recognizer or predictor.

The ultimate goal of the phoneme sequence prediction is usually to minimize the Levenshtein distance between the predicted sequence and the correct one. The Levenshtein distance is a string metric. The Levenshtein distance between two strings is given by the minimum number of operations needed to transform one string into the other, where an operation is an insertion, deletion, or substitution of a single character. For example, the Levenshtein distance between \(\text{kitten} \) and \(\text{sitting} \) is three, since these three edits change one into the other, and there is no way to do it with fewer than three edits (two substitutions and one insertion). The most known application of the Levenshtein distance is in application of spell checkers. However, it is also used to asset the quality of predicting a phoneme sequence [47]. Throughout this chapter we denote by \(\gamma(\bar{p}, \bar{p}') \) the Levenshtein distance between the predicted phoneme sequence \(\bar{p}' \) and the true phoneme sequence \(\bar{p} \). In the next section we present an algorithm which directly aims at minimizing the Levenshtein distance between the predicted phoneme sequence and the correct phoneme sequence.
4.3 The Learning Algorithm

In this section we describe a discriminative supervised learning algorithm for learning a phoneme sequence recognizer f from a training set of examples. Each example in the training set is composed of an acoustic signal \bar{x}, a sequence of phonemes, \bar{p}, and a sequence of phoneme start-times, \bar{s}.

Our construction is based on a predefined vector feature function $\phi : \mathcal{X}^* \times (\mathcal{P} \times \mathbb{N})^* \rightarrow \mathcal{H}$, where \mathcal{H} is a reproducing kernel Hilbert space (RKHS). Thus, the input of this function is an acoustic representation, \bar{x}, together with a candidate phoneme symbol sequence \bar{p} and a candidate phoneme start time sequence \bar{s}. The feature function returns a vector in \mathcal{H}, where, intuitively, each element of the vector represents the confidence in the suggested phoneme sequence. For example, one element of the feature function can sum the number of times phoneme p comes after phoneme p', while other element of the feature function may extract properties of each acoustic feature vector x_t provided that phoneme p was pronounced at time t. The description of the concrete form of the feature function is differed to Section 4.4.

Our goal is to learn a phoneme sequence recognizer f, which takes as input a sequence of acoustic features \bar{x} and returns a sequence of phoneme symbols \bar{p}. The form of the function f we use is

$$f(\bar{x}) = \arg\max_{\bar{p}} \left(\max_{\bar{s}} w \cdot \phi(\bar{x}, \bar{p}, \bar{s}) \right),$$ \hspace{1cm} (4.1)

where $w \in \mathcal{H}$ is a vector of importance weights that should be learned. In words, f returns a suggestion for a phoneme sequence by maximizing a weighted sum of the scores returned by the feature function elements. Learning the weight vector w is analogous to the estimation of the parameters of the local probability functions in HMMs. Our approach, however, does not require w to take a probabilistic form. The maximization defined by Equation (4.1) is over an exponentially large number of all possible phoneme sequences. Nevertheless, as in HMMs, if the feature function, ϕ, is decomposable, the optimization in Equation (4.1) can be efficiently calculated using a dynamic programming procedure.

We now describe a simple iterative algorithm for learning the weight vector w. The algorithm receives as input a training set $S = \{ (\bar{x}_1, \bar{p}_1, \bar{s}_1), \ldots, (\bar{x}_m, \bar{p}_m, \bar{s}_m) \}$ of examples.
Initially we set $w = 0$. At each iteration the algorithm updates w according to the ith example in S as we now describe. Denote by w_{i-1} the value of the weight vector before the ith iteration. Let (\bar{p}^i, \bar{s}^i) be the predicted phoneme sequence for the ith example according to w_{i-1},

$$(\bar{p}^i, \bar{s}^i) = \arg\max_{(\bar{p}, \bar{s})} w_{i-1} \cdot \phi(x_i, \bar{p}, \bar{s}) .$$

We set the next weight vector w_i to be the minimizer of the following optimization problem,

$$\min_{w \in \mathcal{H}, \xi \geq 0} \frac{1}{2} \|w - w_{i-1}\|^2 + C\xi$$

s.t. $w \cdot \phi(x_i, \bar{p}_i, \bar{s}_i) - w \cdot \phi(x_i, \bar{p}'_i, \bar{s}'_i) \geq \gamma(\bar{p}_i, \bar{p}'_i) - \xi$,

where C serves as a complexity-accuracy trade-off parameter as in the SVM algorithm (see [20]) and ξ is a non-negative slack variable, which indicates the loss of the ith example. Intuitively, we would like to minimize the loss of the current example, i.e., the slack variable ξ, while keeping the weight vector w as close as possible to our previous weight vector w_{i-1}. The constraint makes the projection of the correct phoneme sequence $(\bar{x}_i, \bar{p}_i, \bar{s}_i)$ onto w higher than the projection of the predicted phoneme sequence (\bar{p}'_i, \bar{s}'_i) onto w by at least the Levenshtein distance between them. Using similar derivation as in Chapter 3, it can be shown that the solution to the above optimization problem is

$$w_i = w_{i-1} + \alpha_i \Delta \phi_i ,$$

where $\Delta \phi_i = \phi(x_i, \bar{p}_i, \bar{s}_i) - \phi(x_i, \bar{p}'_i, \bar{s}'_i)$. The value of the scalar α_i is based on the Levenshtein distance $\gamma(\bar{p}_i, \bar{p}'_i)$, the different scores that \bar{p}_i and \bar{p}'_i received according to w_{i-1}, and a parameter C. Formally,

$$\alpha_i = \min \left\{ C , \frac{\max\{\gamma(\bar{p}_i, \bar{p}'_i) - w_{i-1} \cdot \Delta \phi_i, 0\}}{\|\Delta \phi_i\|^2} \right\} .$$

A pseudo-code of our algorithm is given in Figure 4.1.

Before analyzing the algorithm we define the following hinge-loss function for phoneme
4.3. THE LEARNING ALGORITHM

Input: training set \(S = \{ (\tilde{x}_i, \tilde{p}_i, \tilde{s}_i) \}_{i=1}^m \); validation set \(S_{\text{val}} = \{ (\tilde{x}_i, \tilde{p}_i, \tilde{s}_i) \}_{i=1}^{m_{\text{val}}} \); parameter \(C \)

Initialize: \(w_0 = 0 \)

For \(i = 1, \ldots, m \)

Predict: \((\tilde{p}_i', \tilde{s}_i') = \arg\max_{\tilde{p}', \tilde{s}'} \phi(\tilde{x}_i, \tilde{p}', \tilde{s}') \)

Set: \(\Delta \phi_i = \phi(\tilde{x}_i, \tilde{p}_i, \tilde{s}_i) - \phi(\tilde{x}_i, \tilde{p}_i', \tilde{s}_i') \)

Set: \(\ell(w_{i-1}; \tilde{x}_i, \tilde{p}_i, \tilde{s}_i) = \max \{ \gamma(\tilde{p}_i, \tilde{p}_i') - w_{i-1} \cdot \Delta \phi_i, 0 \} \)

If \(\ell(w_{i-1}; \tilde{x}_i, \tilde{p}_i, \tilde{s}_i) > 0 \)

Set: \(\alpha_i = \min \left\{ C, \frac{\ell(w_{i-1}; \tilde{x}_i, \tilde{p}_i, \tilde{s}_i)}{\| \Delta \phi_i \|^2} \right\} \)

Update: \(w_i = w_{i-1} + \alpha_i \cdot \Delta \phi_i \)

Output: The weight vector \(w^* \) which achieves best performance on a validation set \(S_{\text{val}} \):

\[
 w^* = \arg\min_{w \in \{ w_1, \ldots, w_m \}} \sum_{j=1}^{m_{\text{val}}} \gamma(\tilde{p}_j, f(\tilde{x}_j))
\]
a weight vector \mathbf{w}^* that satisfies

$$\mathbf{w} \cdot \phi(\tilde{x}_i, \tilde{p}_i, \tilde{s}_i) - \mathbf{w} \cdot \phi(\tilde{x}_i, \tilde{p}'_i, \tilde{s}'_i) \geq \gamma(\tilde{p}_i, \tilde{p}'_i)$$

for all $1 \leq i \leq m$ and \tilde{p}'_i. Let $\mathbf{w}_1, \ldots, \mathbf{w}_m$ be the sequence of weight vectors obtained by the algorithm in Figure 4.1 given the training set S. Then,

$$\frac{1}{m} \sum_{i=1}^{m} \ell(\mathbf{w}_i; (\tilde{x}_i, \tilde{p}_i, \tilde{s}_i)) \leq \frac{1}{m} \sum_{i=1}^{m} \ell(\mathbf{w}^*; (\tilde{x}_i, \tilde{p}_i, \tilde{s}_i)) + \frac{1}{Cm} \|\mathbf{w}^*\|^2 + \frac{1}{2} C . \quad (4.7)$$

In particular, if $C = 1/\sqrt{m}$ then,

$$\frac{1}{m} \sum_{i=1}^{m} \ell(\mathbf{w}_i; (\tilde{x}_i, \tilde{p}_i, \tilde{s}_i)) \leq \frac{1}{m} \sum_{i=1}^{m} \ell(\mathbf{w}^*; (\tilde{x}_i, \tilde{p}_i, \tilde{s}_i)) + \frac{1}{\sqrt{m}} \left(\|\mathbf{w}^*\|^2 + \frac{1}{2}\right) . \quad (4.8)$$

The proof of the theorem goes in the same lines as Theorem 3.5.1.

The loss bound of Theorem 4.3.1 can be translated into a bound on the Levenshtein distance error as follows. Note that the hinge-loss defined by Equation (4.6) is greater than $\gamma(\tilde{p}_i, \tilde{p}'_i)$,

$$\gamma(\tilde{p}_i, \tilde{p}'_i) \leq \ell(\mathbf{w}_i; (\tilde{x}_i, \tilde{p}_i, \tilde{s}_i)).$$

Therefore, we get the following corollary.

Corollary 4.3.2. Under the conditions of Theorem 4.3.1 the following bound on the cumulative Levenshtein distance holds,

$$\sum_{i=1}^{m} \gamma(\tilde{p}_i, \tilde{p}'_i) \leq \frac{1}{m} \sum_{i=1}^{m} \ell(\mathbf{w}^*; (\tilde{x}_i, \tilde{p}_i, \tilde{s}_i)) + \frac{1}{\sqrt{m}} \left(\|\mathbf{w}^*\|^2 + \frac{1}{2}\right) . \quad (4.9)$$

The next theorem tells us that if the cumulative Levenshtein distance of the iterative procedure is small, there exists at least one weight vector among the vectors $\{\mathbf{w}_1, \ldots, \mathbf{w}_m\}$ which attains small averaged Levenshtein distance on unseen examples as well. To find this weight vector we simply calculate the averaged Levenshtein distance attained by each of
the weight vectors on a validation set. The average Levenshtein distance is defined as

\[E \left[\gamma(\vec{p}, \vec{p'}) \right] = E_{(\bar{x}, \bar{p}, \bar{s}) \sim Q} \left[\gamma(\bar{p}, f(\bar{x})) \right], \]

where \(\vec{p}' \) is the phoneme sequence predicted by the function \(f \) defined in Equation (4.1), and the expectation is taken over a fixed and unknown distribution \(Q \) over the domain of the examples, \(\mathcal{X}^* \times \mathcal{E}^* \times \mathbb{N}^* \).

Theorem 4.3.3. Under the same conditions of Theorem 4.3.1. Assume that the training set \(S \) and the validation set \(S_{\text{val}} \) are both sampled i.i.d. from a distribution \(Q \). Denote by \(m_v \) the size of the validation set. Assume in addition that \(\gamma(\vec{p}, \vec{p}') \leq 1 \) for all \(\vec{p} \) and \(\vec{p}' \).

Then, with probability of at least \(1 - \delta \) we have that,

\[E \left[\gamma(\bar{p}, \bar{p}') \right] \leq \frac{1}{m} \sum_{i=1}^{m} \ell(w^*; (\bar{x}_i, \bar{p}_i, \bar{s}_i)) + \frac{\|w^*\|^2 + \frac{1}{2} + \sqrt{2 \ln(2/\delta)}}{\sqrt{m}} + \sqrt{2 \ln(2m/\delta)} \sqrt{m_v} \quad (4.10) \]

The proof of the theorem goes in the same lines as Theorem 3.5.2.

To conclude this section, we extend the family of linear phoneme sequence recognizers given in Equation (4.1) to non-linear recognition functions. This extension is based on Mercer kernels often used in SVM algorithms [77]. Recall that the update rule of the algorithm is \(w_i = w_{i-1} + \alpha_i \Delta \phi_i \) and that the initial weight vector is \(w_0 = 0 \). Thus, \(w_i \) can be rewritten as, \(w_i = \sum_{j=1}^{i} \alpha_j \Delta \phi_j \) and \(f \) can be rewritten as

\[f(\bar{x}) = \arg \max_{\bar{p}} \max_{\bar{s}} \sum_{j=1}^{i} \alpha_j \left(\Delta \phi_j \cdot \phi(\bar{x}, \bar{p}, \bar{s}) \right). \quad (4.11) \]

By substituting the definition of \(\Delta \phi_j \) and replacing the inner-product in Equation (4.11) with a general kernel operator \(K(\cdot, \cdot) \) that satisfies Mercer’s conditions [77], we obtain a non-linear phoneme recognition function,

\[f(\bar{x}) = \arg \max_{\bar{p}} \max_{\bar{s}} \sum_{j=1}^{i} \alpha_j \left(K(\bar{x}_j, \bar{p}_j, \bar{s}_j; \bar{x}, \bar{p}, \bar{s}) - K(\bar{x}_j, \bar{p}_j', \bar{s}_j'; \bar{x}, \bar{p}, \bar{s}) \right). \quad (4.12) \]
It is easy to verify that the definition of α_i given in Equation (4.5) can also be rewritten using the kernel operator.

4.4 Non-Linear Feature Function

In this section we describe the specific feature function we used. As mentioned in the previous section, our goal is to design a non-linear phoneme sequence recognizer using Mercer kernels. Therefore, rather than describing the feature function ϕ, we describe a kernel operator, which computes implicitly the inner-product $\phi(\bar{x}, \bar{p}, \bar{s}) \cdot \phi(\bar{x}', \bar{p}', \bar{s}')$. To simplify our notation we denote by \bar{z} the triplet $(\bar{x}, \bar{p}, \bar{s})$ and similarly \bar{z}' denotes $(\bar{x}', \bar{p}', \bar{s}')$.

The kernel operators $K(\bar{z}, \bar{z}')$ we devise can be written as a weighted sum of three kernel operators $K(\bar{z}, \bar{z}') = \sum_{i=1}^{3} \beta_i K_i(\bar{z}, \bar{z}')$, where β_i are positive parameters. In the following we describe the three kernel operators we use.

The first kernel operator, K_1, is reminiscent of the acoustic model, which appears in HMMs. First, for each phoneme $p \in P$, let $T_p(\bar{z})$ be the set of all frame times in which the phoneme p is uttered. That is, $T_p(\bar{z}) = \{ t : \exists k, p_k = p \land s_k \leq t \leq s_{k+1} \}$. Using this definition, the first kernel operator is defined to be

$$K_1(\bar{z}, \bar{z}') = \sum_{p \in P} \sum_{t \in T_p(\bar{z})} \sum_{\tau \in T_p(\bar{z}')} \exp \left(-\frac{\|x_{i,t} - x_{\tau}\|^2}{2\sigma^2} \right),$$

where σ is a predefined constant. We would like to note in passing that the term $K_1(\bar{z}, \bar{z}') - K_1(\bar{z}', \bar{z})$ in Equation (4.12) can be rewritten in the following more compact form

$$\sum_{p \in P} \left[\sum_{t \in T_p(\bar{z})} \sum_{\tau \in T_p(\bar{z}')} \exp \left(-\frac{\|x_{i,t} - x_{\tau}\|^2}{2\sigma^2} \right) - \sum_{t \in T_p(\bar{z}') \tau \in T_p(\bar{z})} \exp \left(-\frac{\|x_{i,t} - x_{\tau}\|^2}{2\sigma^2} \right) \right].$$

Rewriting the term in the big brackets in a more compact form,

$$\sum_{p \in P} \sum_{\tau \in T_p(\bar{z})} \sum_{t=1}^{\bar{x}_i} \psi(t; \bar{z}, \bar{z}') \exp \left(-\frac{\|x_{i,t} - x_{\tau}\|^2}{2\sigma^2} \right), \quad (4.13)$$
4.4. NON-LINEAR FEATURE FUNCTION

Table 4.1: Calculation of K_1: only the bold lettered phonemes are taken into account.

<table>
<thead>
<tr>
<th>frame</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>\bar{p}</td>
<td>f</td>
<td>f</td>
<td>f</td>
<td>aa</td>
<td>aa</td>
<td>aa</td>
<td>aa</td>
<td>r</td>
<td>r</td>
<td>r</td>
</tr>
<tr>
<td>\bar{p}'</td>
<td>f</td>
<td>f</td>
<td>f</td>
<td>f</td>
<td>ih</td>
<td>ih</td>
<td>ih</td>
<td>r</td>
<td>r</td>
<td>r</td>
</tr>
</tbody>
</table>

where

$$\psi(t; \bar{z}_i, \bar{z}_i') = \begin{cases} 1 & t \in T_p(\bar{z}_i) \land t \notin T_p(\bar{z}_i') \\ -1 & t \notin T_p(\bar{z}_i) \land t \in T_p(\bar{z}_i') \\ 0 & \text{otherwise} \end{cases}$$

In particular, for all frames $x_{i,t}$ such that \bar{z}_i and \bar{z}_i' agree on the uttered phoneme, the value of $\psi(t; \bar{z}_i, \bar{z}_i')$ is zero, which means that frame $x_{i,t}$ does not effect the prediction.

Before describing K_2 and K_3, we give a simple example of the calculation of K_1. Assume that the phoneme sequence \bar{p}_i is /f aa r/ with the corresponding start-time sequence $\bar{s}_i = (0, 3, 7)$ and the phoneme sequence \bar{p}_i' is /f ih r/ with the start-time sequence $\bar{s}_i' = (0, 4, 7)$. Expanding and comparing these sequences, we see that frames 0–2 and 7–9 match while frames 3–6 mismatch (see Table 4.1). Note that the matched frames do not effect Equation (4.13) in any way. In contrast, each mismatched frame influences two summands in Equation (4.13): one with a plus sign corresponding to the sequence \bar{p}_i (the phoneme /aa/) and one with a minus sign corresponding to the sequence \bar{p}_i' (phonemes /f/ and /ih/).

The second kernel operator K_2 is reminiscent of a phoneme duration model and is thus oblivious to the speech signal itself and merely examines the duration of each phoneme. Let D denote a set of predefined thresholds. For each $p \in P$ and $d \in D$ let $N_{p,d}(\bar{z})$ denote the number of times the phoneme p appeared in \bar{p} while its duration was at least d, that is, $N_{p,d}(\bar{z}) = |\{k : p_k = p \land (s_{k+1} - s_k) \geq d\}|$. Using this notation, K_2 is defined to be

$$K_2(\bar{z}, \bar{z}') = \sum_{p \in P} \sum_{d \in D} N_{p,d}(\bar{z}) N_{p,d}(\bar{z}') .$$
The last kernel operator K_3 is reminiscent of a phoneme transition model. Let $A(p', p)$ be an estimated transition probability matrix from phoneme p' to phoneme p. Additionally, let Θ be a set of threshold values. For each $\theta \in \Theta$ let $N_\theta(\bar{z})$ be the number of times we switch from phoneme p_{k-1} to phoneme p_k such that $A(p_{k-1}, p_k)$ is at least θ, that is, $N_\theta(\bar{z}) = |\{k : A(p_{k-1}, p_k) \geq \theta\}|$. Using this notation, K_3 is defined to be

$$K_3(\bar{z}, \bar{z}') = \sum_{\theta \in \Theta} N_\theta(\bar{z}) N_\theta(\bar{z}') .$$

We conclude this section with a brief discussion on the practical evaluation of the function f. Recall that calculating f requires solving the optimization problem $f(\bar{x}) = \arg\max_p \max_s \sum_{j=1}^m \alpha_j \left(K(\bar{z}_j, \bar{z}) - K(\bar{z}'_j, \bar{z})\right)$. A direct search for the maximizer is not feasible since the number of possible phoneme sequences is exponential in the length of the sequence. Fortunately, the kernel operator we have presented is decomposable and thus the best phoneme sequence can be found in polynomial time using dynamic programming (similarly to the Viterbi procedure often implemented in HMMs [58]).

4.5 Experimental Results

To validate the effectiveness of the proposed approach we performed experiments with the TIMIT corpus. All the experiments described here have followed the same methodology. We divided the training portion of TIMIT (excluding the SA1 and SA2 utterances) into two disjoint parts containing 3600 and 96 utterances. The first part is used as a training set and the second part is used as a validation set. Mel-frequency cepstrum coefficients (MFCC) along with their first and second derivatives were extracted from the speech waveform in a standard way along with cepstral mean subtraction (CMS). Leading and trailing silences from each utterance were removed. The TIMIT original phoneme set of 61 phonemes was mapped to a 39 phoneme set as proposed by [47]. Performance was evaluated over the TIMIT core test set by calculating the Levenshtein distance between the predicted phoneme sequence and the correct one.
Table 4.2: Phoneme recognition results comparing our kernel-based discriminative algorithm versus HMM.

<table>
<thead>
<tr>
<th></th>
<th>Correct</th>
<th>Accuracy</th>
<th>Ins.</th>
<th>Del.</th>
<th>Sub.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kernel-based</td>
<td>60.8</td>
<td>54.9</td>
<td>5.9</td>
<td>10.8</td>
<td>28.4</td>
</tr>
<tr>
<td>HMM</td>
<td>62.7</td>
<td>59.1</td>
<td>3.6</td>
<td>10.5</td>
<td>26.8</td>
</tr>
</tbody>
</table>

We applied our method as discussed in Section 4.3 and Section 4.4 where $\sigma^2 = 6$, $C = 80$, $\beta = \{1, 0.02, 0.005\}$, $D = \{5, 10, 15, \ldots, 40\}$ and $\Theta = \{0.1, 0.2, \ldots, 0.9\}$. We compared the results of our method to the HMM approach, where each phoneme was represented by a simple left-to-right HMM of 5 emitting states with 40 diagonal Gaussians. These models were enrolled as follows: first the HMMs were initialized using K-means, and then enrolled independently using EM. The second step, often called embedded training, re-enrolls all the models by relaxing the segmentation constraints using a forced alignment. Minimum values of the variances for each Gaussian were set to 20% of the global variance of the data. All HMM experiments were done using the Torch package [16]. All hyper-parameters including number of states, number of Gaussians per state, variance flooring factor, were tuned using the validation set. The overall results are given in Table 4.2. We report the number of insertions (Ins.), deletions (Del.) and substitutions (Sub.), as calculated by the Levenshtein distance. The Levenshtein distance is defined as the sum of insertions, deletions, and substitutions. Accuracy stands for 100% minus the Levenshtein distance and Correct stands for Accuracy plus insertions. As can be seen, the HMM method outperforms our method in terms of accuracy, mainly due to the high level of insertions of our method, suggesting that a better duration model should be explored. Nevertheless, we believe that the potential of our method is larger than the results reported and we discuss some possible improvements in the next section.
Chapter 5

Discriminative Keyword Spotting

5.1 Introduction

Keyword (or word) spotting refers to the detection of any occurrence of a given word in a speech signal. In this chapter we propose an algorithm for keyword spotting that builds upon recent work on discriminative supervised learning and overcomes some of the inherent problems of the HMM approaches. Our approach solves directly the keyword spotting problem (rather than using a large vocabulary speech recognizer as in [73]), and does not estimate a garbage or background model (as in [71]).

This chapter is organized as follows. In Section 5.2 we formally introduce the keyword spotting problem. We then present the large margin approach for keyword spotting in Section 5.3. Next, the proposed iterative learning method is described in Section 5.4. Our method is based on non-linear phoneme recognition and segmentation functions. The specific feature functions we use for are presented in Section 5.6. In Section 5.7 we present experimental results with the TIMIT corpus and with The Wall Street Journal (WSJ) corpus.

Related Work. Most work on keyword spotting has been based on HMMs. In these approaches, the detection of the keyword is based on an HMM composed of two sub-models, the keyword model and the background or garbage model, such as the HMM depicted
5.1. **INTRODUCTION**

in Figure 5.5. Given a speech sequence, such a model detects the keyword through Viterbi decoding: the keyword is considered as uttered in the sequence if the best path goes through the keyword model. This generic framework encompasses the three main classes of HMM-based keyword spotters, that is *whole-word* modeling, *phonetic-based* approaches and *large-vocabulary-based* approaches.

Whole-word modeling is one of the earliest approaches using HMM for keyword spotting [60, 64]. In this context, the keyword model is itself an HMM, trained from recorded utterances of the keyword. The garbage model is also an HMM, trained from non-keyword speech data. The training of such a model hence require several recorded occurrences of the keyword, in order to estimate reliably the keyword model parameters. Unfortunately, in most applications, such data are rarely provided for training, which yields the introduction of phonetic-based word spotters.

In phonetic-based approaches, both the keyword model and the garbage model are built from phonemes (or triphones) sub-models [6, 50, 63]. Basically, the keyword model is a left-right HMM, resulting from the concatenation of the sub-models corresponding to the keyword phoneme sequence. The garbage model is an ergodic HMM, which fully connects all phonetic sub-models. In this case, sub-model training is performed through embedded training from a large set of acoustic sequences labeled phonetically, like for speech recognition HMMs [58]. This approach hence does not require training utterances of the keyword, solving the main limitation of the whole word modeling approach. However, the phonetic-based HMM has another drawback, due to the use of the same sub-models in the keyword model and in the garbage model. In fact, the garbage model can intrinsically model any phoneme sequence, including the keyword itself. This issue is typically addressed by tuning the prior probability of the keyword, or by using a more refined garbage model, e.g. [6, 50]. Another solution can also be to avoid the need for garbage modeling through the computation of the likelihood of the keyword model for any subsequence of the test signal, as proposed in [39].

A further extension of HMM spotter approaches consists in using Large Vocabulary Continuous Speech Recognition (LVCSR) HMMs. This approach can actually be seen as
Figure 5.1: Example of our notation. The waveform of the spoken utterance “a lone star shone...” taken from the TIMIT corpus. The keyword k is the word *star*. The phonetic transcription \bar{p} along with the alignment sequence \bar{s} are schematically depicted in the figure.

A phonetic-based approach in which the garbage model only allows valid words from the lexicon, except the targeted keyword. This use of additional linguistic constraints is shown to improve the spotting performance [10, 66, 73, 79]. Such an approach however raises some conceptual and practical concerns. From a conceptual point of view, one can wonder whether an automatic system should require such a linguistic knowledge while a human addresses the keyword spotting task without knowing a large vocabulary in the targeted language. Besides this aspect, one can also wonder whether the design of a keyword spotting system should require the expensive collection a large amount of labeled data typically needed to train LVCSR systems, as well as the computational requirement to perform large vocabulary decoding [50].

5.2 Problem Setting

Any keyword (or word) is naturally composed of a sequence of phonemes. In the keyword spotting task, we are provided with a speech utterance and a keyword and the goal is to decide whether the keyword is uttered or not, namely, whether the corresponding sequence of phonemes is articulated in the given utterance.
Formally, we represent a speech signal as a sequence of acoustic feature vectors $\bar{x} = (x_1, \ldots, x_T)$, where $x_t \in \mathcal{X} \subset \mathbb{R}^d$ for all $1 \leq t \leq T$. We denote a keyword by $k \in \mathcal{V}$, where \mathcal{V} is a lexicon of words. Each keyword k is composed of a sequence of phonemes $\bar{p}^k = (p_1, \ldots, p_L)$, where $p_l \in \mathcal{P}$ for all $1 \leq l \leq L$ and \mathcal{P} is the domain of the phoneme symbols. We denote by \mathcal{P}^* the set of all finite length sequences over \mathcal{P}. Our goal is to learn a keyword spotter, denoted f, which takes as input the pair (\bar{x}, \bar{p}^k) and returns a real value expressing the confidence that the targeted keyword k is uttered in \bar{x}. That is, f is a function from $\mathcal{X}^* \times \mathcal{P}^*$ to the set \mathbb{R}. The confidence score outputted by f for a given pair (\bar{x}, \bar{p}^k) can then be compared to a threshold b to actually determine whether \bar{p}^k is uttered in \bar{x}. Let us further define the alignment of a phoneme sequence to a speech signal. We denote by $s_l \in \mathbb{N}$ the start time of phoneme p_l (in frame units), and by $e_l \in \mathbb{N}$ the end time of phoneme p_l. We assume that the start time of phoneme p_{l+1} is equal to the end time of phoneme p_l, that is, $e_l = s_{l+1}$ for all $1 \leq l \leq L - 1$. The alignment sequence \bar{s}^k corresponding to the phonemes sequence \bar{p}^k is a sequence of start-times and an end-time, $\bar{s}^k = (s_1, \ldots, s_L, e_L)$, where s_1 is the start-time of phoneme p_1 and e_L is the end-time of the last phoneme p_L. An example of our notation is given in Figure 5.1.

The performance of a keyword spotting system is often measured by the Receiver Operating Characteristics (ROC) curve, that is, a plot of the true positive (spotting a keyword correctly) rate as a function of the false positive (mis-spotting a keyword) rate (see for example [4,44,71]). The points on the curve are obtained by sweeping the decision threshold b from the most positive confidence value outputted by the system to the most negative one. Hence, the choice of b represents a trade-off between different operational settings, corresponding to different cost functions weighing false positive and false negative errors. Assuming a flat prior over all these cost functions, a criterion to identify a good keyword spotting system that would be good on average for all these settings could be to select the one maximizing the area under the ROC curve (AUC). In the following we propose an algorithm which directly aims at maximizing the AUC.
5.3 A Large Margin Approach for Keyword Spotting

In this section we describe a discriminative supervised algorithm for learning a spotting function \(f \) from a training set of examples. Our construction is based on a set of predefined feature functions \(\{ \phi \}_{j=1}^n \). Each feature function is of the form \(\phi_j : \mathcal{X}^* \times \mathcal{P}^* \times \mathcal{N}^* \to \mathbb{R} \). That is, each feature function takes as input an acoustic representation of a speech utterance \(\bar{x} \in \mathcal{X}^* \), together with a phoneme sequence \(\bar{p}^k \in \mathcal{P}^* \) of the keyword \(k \), and a candidate alignment sequence \(\bar{s}^k \in \mathcal{N}^* \) into an abstract vector-space, and returns a scalar in \(\mathbb{R} \) which, intuitively, represents the confidence in the suggested alignment sequence given the keyword phoneme sequence \(\bar{p}^k \). For example, one element of the feature function can sum the number of times phoneme \(p \) comes after phoneme \(p' \), while other elements of the feature function may extract properties of each acoustic feature vector \(x_t \) provided that phoneme \(p \) is pronounced at time \(t \). The description of the concrete form of the feature functions is differed to Section 5.6.

Our goal is to learn a keyword spotter \(f \), which takes as input a sequence of acoustic features \(\bar{x} \), a keyword \(\bar{p}^k \), and returns a confidence value in \(\mathbb{R} \). The form of the function \(f \) we use is

\[
f(\bar{x}, \bar{p}^k) = \max_{\bar{s}} w \cdot \phi(\bar{x}, \bar{p}^k, \bar{s}),
\]

where \(w \in \mathbb{R}^n \) is a vector of importance weights (“model parameters”) that should be learned and \(\phi \in \mathbb{R}^n \) is a vector function composed out of the feature functions \(\phi_j \). In other words, \(f \) returns a confidence prediction about the existence of the keyword in the utterance by maximizing a weighted sum of the scores returned by the feature function elements over all possible alignment sequences. The maximization defined by Equation (5.1) is over an exponentially large number of alignment sequences. Nevertheless, as in HMMs, if the feature functions \(\phi \) are decomposable, the maximization in Equation (5.1) can be efficiently calculated using a dynamic programming procedure.

Recall that we would like to obtain a system that maximizes the AUC on unseen data. In order to do so, we will maximize the AUC over a large set of training examples. In Section 5.5 we show that our algorithm which maximizes the AUC over the training set is likely to
5.3. A LARGE MARGIN APPROACH FOR KEYWORD SPOTTING

maximizes the AUC over an unseen data as well. Let us consider two sets of examples. Denote by \mathcal{X}_k^+ a set of speech utterances in which the keyword k is uttered. Similarly, denote by \mathcal{X}_k^- a set of speech utterances in which the keyword k is not uttered. The AUC for keyword k can be written in the form of the Wilcoxon-Mann-Whitney statistic [17] as

$$A_k = \frac{1}{|\mathcal{X}_k^+||\mathcal{X}_k^-|} \sum_{\bar{x}^+ \in \mathcal{X}_k^+} \sum_{\bar{x}^- \in \mathcal{X}_k^-} \mathbb{1}_{\{f(\bar{x}^+, p^k) > f(\bar{x}^-, p^k)\}},$$

(5.2)

where $|\cdot|$ refers to the cardinality of a set, and $\mathbb{1}_{\{\cdot\}}$ refers to the indicator function, that is, $\mathbb{1}_{\{\pi\}}$ is 1 whenever the predicate π is true and 0 otherwise. Thus, A_k estimates the probability that the score assigned to an utterance that contains the keyword k is greater than the score assigned to an utterance which does not contain it. Hence, the average AUC over the set of keywords \mathcal{V} can be written as

$$A = \frac{1}{|\mathcal{V}|} \sum_{k \in \mathcal{V}} A_k = \frac{1}{|\mathcal{V}|} \sum_{k \in \mathcal{V}} \frac{1}{|\mathcal{X}_k^+||\mathcal{X}_k^-|} \sum_{\bar{x}^+ \in \mathcal{X}_k^+} \sum_{\bar{x}^- \in \mathcal{X}_k^-} \mathbb{1}_{\{f(\bar{x}^+, p^k) > f(\bar{x}^-, p^k)\}}.$$

(5.3)

We now describe a large margin approach for learning the weight vector w, which defines the keyword spotting function as in Equation (5.1), from a training set S of examples. Each example in the training set S is composed of a keyword phoneme sequence \bar{p}^k, an utterance $\bar{x}^+ \in \mathcal{X}_k^+$ in which the keyword k is uttered, an utterance $\bar{x}^- \in \mathcal{X}_k^-$ in which the keyword k is not uttered, and an alignment sequence \bar{s} that corresponds to the location of the keyword k is greater than the score assigned to an utterance which does not contain it. Hence, the average AUC over the set of keywords \mathcal{V} can be written as

We assume that we have access to the correct alignment \bar{s} of the phonemes sequence \bar{p} for each training utterance $\bar{x}^+ \in \mathcal{X}_k^+$. This assumption is actually not restrictive since such an alignment can be inferred relying on an alignment algorithm [43].

Similar to the SVM algorithm for binary classification [18, 77], our approach for choosing the weight vector w is based on the idea of large-margin separation. Theoretically, our approach can be described as a two-step procedure: first, we construct the vectors $\phi(\bar{x}^+_i, \bar{p}^k_i, \bar{s}^+_i)$ and $\phi(\bar{x}^-_i, \bar{p}^k_i, \bar{s})$ in the vector space \mathbb{R}^n based on each instance $(\bar{p}^k_i, \bar{x}^+_i, \bar{x}^-_i, \bar{s}_i)$, and each possible alignment sequence \bar{s} for the negative sequence \bar{x}^-_i.
Second, we find a vector \(\mathbf{w} \in \mathbb{R}^n \), such that the projection of vectors onto \(\mathbf{w} \) ranks the vectors constructed in the first step above according to their quality. Ideally, for any keyword \(k_i \in \mathcal{V}_{\text{train}} \), for every instance pair \((\bar{x}_i^+, \bar{x}_i^-) \in X_{k_i}^+ \times X_{k_i}^-\), we would like the following constraint to hold

\[
\mathbf{w} \cdot \phi(\bar{x}_i^+, \bar{p}_k^i, \bar{s}_k^i) - \max_{\bar{s}} \mathbf{w} \cdot \phi(\bar{x}_i^-, \bar{p}_k^i, \bar{s}) \geq 1 \quad \forall i . \tag{5.4}
\]

That is, \(\mathbf{w} \) should rank the utterance that contains the keyword above any utterance that does not contain it by at least 1. Moreover, we even consider the best alignment of the keyword within the utterance that does not contain it. We refer to the difference \(\mathbf{w} \cdot \phi(\bar{x}_i^+, \bar{p}_k^i, \bar{s}_k^i) - \max_{\bar{s}} \mathbf{w} \cdot \phi(\bar{x}_i^-, \bar{p}_k^i, \bar{s}) \) as the margin of \(\mathbf{w} \) with respect to the best alignment of the keyword \(k \) in the utterance that does not contain it. Note that if the prediction of \(\mathbf{w} \) is incorrect then the margin is negative. Naturally, if there exists a \(\mathbf{w} \) satisfying all the constraints Equation (5.4), the margin requirements are also satisfied by multiplying \(\mathbf{w} \) by a large scalar. The SVM algorithm solves this problem by selecting the weights \(\mathbf{w} \) minimizing \(\frac{1}{2} \| \mathbf{w} \|^2 \) subject to the constraints given in Equation (5.4), as it can be shown that the solution with the smallest norm is likely to achieve better generalization [77].

In practice, it might be the case that the constraints given in Equation (5.4) cannot be satisfied. To overcome this obstacle, we follow the soft SVM approach [18, 77] and define the following hinge-loss function,

\[
\ell(\mathbf{w}; (\bar{p}^k, \bar{x}^+, \bar{x}^-, \bar{s}^k)) = \frac{1}{|X_{k_i}^+||X_{k_i}^-|} \left[1 - \mathbf{w} \cdot \phi(\bar{x}_i^+, \bar{p}_k^i, \bar{s}_k^i) + \max_{\bar{s}} \mathbf{w} \cdot \phi(\bar{x}_i^-, \bar{p}_k^i, \bar{s}) \right]^+ , \tag{5.5}
\]

where \([a]_+ = \max\{0, a\}\). The hinge loss measures the maximal violation for any of the constraints given in Equation (5.4). The soft SVM approach for our problem is to choose the vector \(\mathbf{w}^* \) which minimizes the following optimization problem

\[
\mathbf{w}^* = \arg\min_{\mathbf{w}} \frac{1}{2} \| \mathbf{w} \|^2 + C \sum_{i=1}^{m} \ell(\mathbf{w}; (\bar{p}_k^i, \bar{x}_i^+, \bar{x}_i^-, \bar{s}_k^i)) , \tag{5.6}
\]
5.4 An Iterative Algorithm

We now describe a simple iterative algorithm for learning the weight vector \(\mathbf{w} \). The algorithm receives as input a set of training examples \(S = \{(\bar{p}^k_i, \bar{x}^+_i, \bar{x}^-_i, \bar{s}^k_i)\}_{i=1}^m \) and examines each of them sequentially. Initially, we set \(\mathbf{w} = \mathbf{0} \). At each iteration \(i \), the algorithm updates \(\mathbf{w} \) according to the current example \((\bar{p}^k_i, \bar{x}^+_i, \bar{x}^-_i, \bar{s}^k_i) \) as we now describe. Denote by \(\mathbf{w}_{i-1} \) the value of the weight vector before the \(i \)th iteration. Let \(\bar{s}' \) be the predicted alignment for the negative utterance, \(\bar{x}_i^- \), according to \(\mathbf{w}_{i-1} \),

\[
\bar{s}' = \arg \max_{\bar{s}} \mathbf{w}_{i-1} \cdot \phi(\bar{x}_i^-, \bar{p}^k_i, \bar{s}) .
\]

Let us define the normalized difference between the feature functions of the acoustic sequence in which the keyword is uttered and the feature functions of the acoustic sequence in which the keyword is not uttered as \(\Delta \phi_i \), that is,

\[
\Delta \phi_i = \frac{1}{|\mathcal{X}^+_k||\mathcal{X}^-_k|} \left(\phi(\bar{x}_i^+, \bar{p}^k_i, \bar{s}^k_i) - \phi(\bar{x}_i^-, \bar{p}^k_i, \bar{s}') \right) .
\]

The normalization factor is a result of our goal to minimize the average AUC (see Section 5.5). We set the next weight vector \(\mathbf{w}_i \) to be the minimizer of the following optimization
CHAPTER 5. DISCRIMINATIVE KEYWORD SPOTTING

problem,

$$\min_{w \in \mathbb{R}^n, \xi \geq 0} \frac{1}{2} \|w - w_{i-1}\|^2 + C \xi \quad (5.9)$$

s.t. \(w \cdot \Delta \phi \geq 1 - \xi \),

where \(C \) serves as a complexity-accuracy trade-off parameter (see [19]) and \(\xi \) is a non-negative slack variable, which indicates the loss of the \(i \)th example. Intuitively, we would like to minimize the loss of the current example, i.e., the slack variable \(\xi \), while keeping the weight vector \(w \) as close as possible to the previous weight vector \(w_{i-1} \). The constraint makes the projection of the sequence that contains the keyword onto \(w \) higher than the projection of the sequence that does not contain it onto \(w \) by at least 1. It can be shown (see [19]) that the solution to the above optimization problem is

$$w_i = w_{i-1} + \alpha_i \Delta \phi_i \quad (5.10)$$

The value of the scalar \(\alpha_i \) is based on the difference \(\Delta \Phi_i \), the previous weight vector \(w_{i-1} \), and a parameter \(C \). Formally,

$$\alpha_i = \min \left\{ C, \frac{[1 - w_{i-1} \cdot \Delta \phi_i]_+}{\|\Delta \phi_i\|^2} \right\} \quad (5.11)$$

The optimization problem given in Equation (5.9) is based on ongoing work on online learning algorithms appearing in [19]. Based on this work, it is shown in Section 5.5 that, under some mild technical conditions, the cumulative performance of the iterative procedure, i.e.,

$$\frac{1}{m} \sum_{i=1}^{m} 1_{\{w_i \cdot \Delta \phi_i > 0\}}$$

is likely to be high. Moreover, it can further be shown that if the cumulative performance of the iterative procedure is high, there exists at least one weight vector among the vectors \(\{w_1, \ldots, w_m\} \) which attains high averaged performance on unseen examples as well, that is, there exists a vector which attains high averaged AUC over a set of unseen examples. To find this weight vector, we simply calculate the averaged loss attained by each of the weight vectors on a validation set. A pseudo-code of our algorithm
5.5. THEORETICAL ANALYSIS

In this section, we show that the iterative algorithm given in Section 5.4 maximizes the cumulative AUC, defined as

$$\hat{A} = \frac{1}{m} \sum_{i=1}^{m} \mathbb{1}_{\{w_i \cdot \phi(\vec{x}^+_i, \vec{p}^k_i, \vec{s}^k_i) \geq w_i \cdot \phi(\vec{x}^-_i, \vec{p}^k_i, \vec{s}'_i)\}},$$

(5.12)

Our first theorem shows that the area above the curve, i.e. $1 - \hat{A}$, is smaller than the average loss of the solution of the SVM problem defined in Equation (5.6). That is, the cumulative AUC, generated by the iterative algorithm is going to be large, given that the loss of the SVM solution (or any other solution) is small, and that the number of examples,
Theorem 5.5.1.: Let \(S = \{(\bar{p}_k^i, \bar{x}_i^+, \bar{x}_i^-, \bar{s}_i^k)\}_{i=1}^m \) be a set of training examples and assume that for all \(k, \bar{x} \) and \(\bar{s} \) we have that \(\|\phi(\bar{x}, \bar{p}_k, \bar{s})\| \leq 1 \). Let \(w^* \) be the optimum of the SVM problem given in Equation (5.6). Let \(w_1, \ldots, w_m \) be the sequence of weight vectors obtained by the algorithm in Figure 5.2 given the training set \(S \). Then,

\[
1 - \tilde{A} \leq \frac{1}{m} \|w^*\|^2 + \frac{2C}{m} \sum_{i=1}^m \ell(w^*; (\bar{p}_k^i, \bar{x}_i^+, \bar{x}_i^-, \bar{s}_i^k)).
\]

(5.13)

where \(C > 1 \) and \(\tilde{A} \) is the cumulative AUC.

Proof. The proof of the theorem relies on Lemma 1 and Theorem 4 in [19]. Lemma 1 in [19] implies that,

\[
\sum_{i=1}^m \alpha_i (2\ell_i - \alpha_i \|\Delta \phi_i\|^2 - 2\ell_i^*) \leq \|w^*\|^2. \tag{5.14}
\]

Now if the algorithm makes a prediction mistake, i.e., predicts that an utterance that does not contain the keyword has a greater confidence than another utterance that does contain it, then \(\ell_i \geq 1 \). Using the assumption that \(\|\phi(\bar{x}, \bar{p}_k, \bar{s})\| \leq 1 \) and the definition of \(\alpha_i \) given in Equation (5.11), when substituting \([1 - w_{i-1} \cdot \Delta \phi_i]_+ \) for \(\ell_i \) in its denominator, we conclude that if a prediction mistake occurs then it holds that

\[
\alpha_i \ell_i \geq \min \left\{ \frac{\ell_i}{\Delta \phi_i}, C \right\} \geq \min \{1, C\} = 1. \tag{5.15}
\]

Summing over all the prediction mistakes made on the entire training set \(S \) and taking into account that \(\alpha_i \ell_i \) is always non-negative. it holds that

\[
\sum_{i=1}^m \alpha_i \ell_i \geq \sum_{i=1}^m \frac{1}{\|w_i \cdot \phi(\bar{x}_i^+, \bar{p}_k^i, \bar{s}_i^k)\| \leq w_i \cdot \phi(\bar{x}- \bar{p}_k^i, \bar{s}^{'i})}. \tag{5.16}
\]

Again using the definition of \(\alpha_i \), we know that \(\alpha_i \ell_i^* \leq Cl_i^* \) and that \(\alpha_i \|\Delta \phi_i\|^2 \leq \ell_i \). Plugging
these two inequalities and Equation (5.16) into Equation (5.14) we get

$$\sum_{i=1}^{m} \mathbb{1}_{\{w_i \cdot \phi(\bar{x}_i^+, p_{ki}^+, s_{ki}^+) \leq w_i \cdot \phi(\bar{x}_i^-, p_{ki}^-)} \leq \|w^*\|^2 + 2C \sum_{i=1}^{m} \ell_i^*.$$

(5.17)

The theorem follows by replacing the sum over prediction mistakes to a sum over prediction hits and plugging-in the definition of the cumulative AUC given in Equation (5.12).

The next theorem states that the output of our algorithm is likely to have good generalization, i.e. the expected value of the AUC resulted from decoding on unseen test set is likely to be large.

Theorem 5.5.2. Under the same conditions of Theorem 5.5.1. Assume that the training set S and the validation set S_{val} are both sampled i.i.d. from a distribution Q. Denote by m_{val} the size of the validation set. With probability of at least $1 - \delta$ we have

$$1 - \hat{A} = \mathbb{E}_Q \left[\mathbb{1}_{\{f(\bar{x}_i^+, p_{ki}) \leq f(\bar{x}_i^-, p_{ki})\}} \right] = \text{Pr}_Q \left[f(\bar{x}_i^+, p_{ki}) \leq f(\bar{x}_i^-, p_{ki}) \right] \leq \frac{1}{m} \sum_{i=1}^{m} \ell(w^*; (p_{ki}^+, \bar{x}_i^+, \bar{x}_i^-, s_{ki})) + \frac{\|w^*\|^2}{m} + \frac{\sqrt{2 \ln(2/\delta)}}{\sqrt{m}} + \frac{\sqrt{2 \ln(2m/\delta)}}{\sqrt{m_{val}}},$$

(5.18)

where \hat{A} is the mean AUC defined as $\hat{A} = \mathbb{E}_Q \left[\mathbb{1}_{\{f(\bar{x}_i^+, p_{ki}) > f(\bar{x}_i^-, p_{ki})\}} \right]$.

Proof. Denote the risk of keyword spotter f by

$$\text{risk}(f) = \mathbb{E} \left[\mathbb{1}_{\{f(\bar{x}_i^+, p_{ki}) \leq f(\bar{x}_i^-, p_{ki})\}} \right] = \mathbb{P} \left[f(\bar{x}_i^+, p_{ki}) \leq f(\bar{x}_i^-, p_{ki}) \right]$$

Proposition 1 in [12] implies that with probability of at least $1 - \delta_1$ the following bound holds,

$$\frac{1}{m} \sum_{i=1}^{m} \text{risk}(f_i) \leq \frac{1}{m} \sum_{i=1}^{m} \mathbb{1}_{\{f_i(\bar{x}_i^+, p_{ki}) \leq f_i(\bar{x}_i^-, p_{ki})\}} + \frac{\sqrt{2 \ln(1/\delta_1)}}{\sqrt{m}}.$$

Combining this fact with Theorem 5.5.1 we obtain that,

$$\frac{1}{m} \sum_{i=1}^{m} \text{risk}(f_i) \leq \frac{2C}{m} \sum_{i=1}^{m} \ell_i^* + \frac{\|w^*\|^2}{m} + \frac{\sqrt{2 \ln(1/\delta_1)}}{\sqrt{m}}.$$

(5.19)
The left-hand side of the above inequality upper bounds \(\text{risk}(f^*) \), where \(f^* = \arg \min_{f_i} \text{risk}(f_i) \). Therefore, among the finite set of keyword spotting functions, \(F = \{f_1, \ldots, f_m\} \), there exists at least one keyword spotting function (for instance the function \(f^* \)) whose true risk is bounded above by the right hand side of Equation (5.19). Recall that the output of our algorithm is the keyword spotter \(f \in F \), which minimizes the average cost over the validation set \(S_{\text{val}} \). Applying Hoeffding inequality together with the union bound over \(F \) we conclude that with probability of at least \(1 - \delta_2 \),

\[
\text{risk}(f) \leq \text{risk}(f^*) + \sqrt{\frac{2 \ln \left(\frac{m}{\delta_2} \right)}{m_{\text{val}}}},
\]

where \(m_{\text{val}} = |S_{\text{val}}| \). We have therefore shown that with probability of at least \(1 - \delta_1 - \delta_2 \) the following inequality holds,

\[
\text{risk}(f) \leq \frac{1}{m} \sum_{i=1}^{m} \ell_i^* + \frac{\|w^*\|^2}{m} + \frac{\sqrt{2 \ln(1/\delta_1)}}{\sqrt{m}} + \frac{\sqrt{2 \ln(m/\delta_2)}}{\sqrt{m_{\text{val}}}}.
\]

Setting \(\delta_1 = \delta_2 = \delta/2 \) concludes our proof.

\[\square\]

5.6 Feature Functions

In this section we present the implementation details of our learning approach for the task of keyword spotting. Recall that our construction is based on a set of feature functions, \(\{\phi_j\}_{j=1}^{n} \), which maps an acoustic-phonetic representation of a speech utterance as well as a suggested alignment sequence into a vector-space. In order to make this section more readable we omit the keyword index \(k \).

We introduce a specific set of base functions, which is highly adequate for the keyword spotting problem. We utilize seven different feature functions \((n = 7) \). These feature functions are used for defining our keyword spotting function \(f(\bar{x}, \bar{p}) \) as in Equation (5.1). Note that the same set of feature functions found also to be also useful in the task of speech-to-phoneme alignment (see Chapter 3).
Our first four feature functions aim at capturing transitions between phonemes. These feature functions are the distance between frames of the acoustic signal at both sides of phoneme boundaries as suggested by an alignment sequence \(\bar{s} \). The distance measure we employ, denoted by \(d \), is the Euclidean distance between feature vectors. Our underlying assumption is that if two frames, \(x_t \) and \(x_{t'} \), are derived from the same phoneme then the distance \(d(x_t, x_{t'}) \) should be smaller than if the two frames are derived from different phonemes. Formally, our first four feature functions are defined as

\[
\phi_j(\bar{x}, \bar{p}, \bar{s}) = |\bar{p}| - 1 \sum_{i=2}^{j} d(x_{-j+s_i}, x_{j+s_i}), \quad j \in \{1, 2, 3, 4\} .
\] (5.20)

If \(\bar{s} \) is the correct timing sequence then distances between frames across the phoneme change points are likely to be large. In contrast, an incorrect phoneme start time sequence is likely to compare frames from the same phoneme, often resulting in small distances.

The fifth feature function we use is built from a frame-wise phoneme classifier described in [23]. Formally, for each phoneme event \(p \in \mathcal{P} \) and frame \(x \in \mathcal{X} \), there is a confidence, denoted \(g_p(x) \), that the phoneme \(p \) is pronounced in the frame \(x \). The resulting feature function measures the cumulative confidence of the complete speech signal given the phoneme sequence and their start-times,

\[
\phi_5(\bar{x}, \bar{p}, \bar{s}) = \sum_{i=1}^{|\bar{p}|} \sum_{t=s_i}^{s_{i+1}-1} g_{p_i}(x_t) .
\] (5.21)

Our next feature function scores alignment sequences based on phoneme durations. Unlike the previous feature functions, the sixth feature function is oblivious to the speech signal itself. It merely examines the length of each phoneme, as suggested by \(\bar{s} \), compared to the typical length required to pronounce this phoneme. Formally,

\[
\phi_6(\bar{x}, \bar{p}, \bar{s}) = \sum_{i=1}^{|\bar{p}|} \log \mathcal{N}(s_{i+1} - s_i; \hat{\mu}_{p_i}, \hat{\sigma}_{p_i}) ,
\] (5.22)

where \(\mathcal{N} \) is a Normal probability density function with mean \(\hat{\mu}_p \) and standard deviation \(\hat{\sigma}_p \).
In our experiments, we estimated $\hat{\mu}_p$ and $\hat{\sigma}_p$ from the training set (see Section 5.7).

Our last feature function exploits assumptions on the speaking rate of a speaker. Intuitively, people usually speak in an almost steady rate and therefore a timing sequence in which speech rate is changed abruptly is probably incorrect. Formally, let $\hat{\mu}_p$ be the average length required to pronounce the pth phoneme. We denote by r_i the relative speech rate, $r_i = (s_{i+1} - s_i)/\hat{\mu}_p$. That is, r_i is the ratio between the actual length of phoneme p_i as suggested by \bar{s} to its average length. The relative speech rate presumably changes slowly over time. In practice the speaking rate ratios often differ from speaker to speaker and within a given utterance. We measure the local change in the speaking rate as $(r_i - r_{i-1})^2$ and we define the feature function ϕ_7 as the local change in the speaking rate,

$$\phi_7(\bar{x}, \bar{p}, \bar{s}) = \sum_{i=2}^{\bar{p}} (r_i - r_{i-1})^2 . \quad (5.23)$$

Each of the feature functions is normalized by the number of frames in the speech utterance, and each of the feature functions is weighted by a fixed constant, $\{\beta_j\}_{j=1}^7$. The constants are determined so as to maximize performance over a validation set.

5.7 Experimental Results

To validate the effectiveness of the proposed approach we performed experiments with the TIMIT corpus. We divided the training portion of TIMIT (excluding the SA1 and SA2 utterances) into three disjoint parts containing 500, 80 and 3116 utterances. The first part of the training set was used for learning the functions g_p (Equation (5.21)), which define the feature function ϕ_5. Those functions were learned by the algorithm described in [23] using the MFCC+Δ+$\Delta\Delta$ acoustic features and a Gaussian kernel with parameter $\sigma = 6.24$.

The second set of 80 utterances formed the validation set needed for our keyword spotting algorithm. The set was built out of a set of 40 keywords randomly chosen from the
5.7. EXPERIMENTAL RESULTS

Figure 5.3: ROC curves of the discriminative algorithm and the HMM approach, trained on the TIMIT training set and tested on 80 keywords from TIMIT test set. The AUC of the ROC curves is 0.99 and 0.96 for the discriminative algorithm and the HMM algorithm, respectively.

Figure 5.4: ROC curves of the discriminative algorithm and the HMM approach, trained on the TIMIT training set and tested on 80 keywords from WSJ test set. The AUC of the ROC curves is 0.94 and 0.88 for the discriminative algorithm and the HMM algorithm, respectively.
TIMIT lexicon. The 80 utterances were chosen by pairs: one utterance in which the keyword was uttered and another utterance in which the keyword was not uttered. Finally, we ran our iterative algorithm on the rest of the utterances in the training set. The value of the parameter C was set to be 1.

We compared the results of our method to the HMM approach, where each phoneme was represented by a simple left-to-right HMM of 5 emitting states with 40 diagonal Gaussians. These models were enrolled as follows: first the HMMs were initialized using K-means, and then enrolled independently using EM. The second step, often called *embedded training*, re-enrolls all the models by relaxing the segmentation constraints using a forced alignment. Minimum values of the variances for each Gaussian were set to 20% of the global variance of the data. All HMM experiments were done using the *Torch* package [16]. All hyper-parameters including number of states, number of Gaussians per state, variance flooring factor, were tuned using the validation set.

Keyword detection was performed with a new HMM composed of two sub HMM models, the keyword model and the garbage model, as depicted in Figure 5.5. The keyword model was an HMM which estimated the likelihood of an acoustic sequence given that the sequence represented the keyword phoneme sequence. The garbage model was an HMM composed of phoneme HMMs fully connected to each others, which estimated the likelihood of any acoustic sequence. The overall HMM fully connected the keyword model and the garbage model. The detection of a keyword given a test utterance was performed through a best path search, were an external parameter of the prior keyword probability was added to the keyword sub HMM model. The best path found by Viterbi
decoding on the overall HMM either passed through the keyword model (in which case the keyword was said to be uttered) or not (in which case the keyword was not in the acoustic sequence). Swiping the prior keyword probability parameters set the trade-off between the true positive rate and the false positive rate.

The test set was composed of 80 randomly chosen keywords, distinct from the keywords of the training and validation sets. For each keyword, we randomly picked at most 20 utterances in which the keyword was uttered and at most 20 utterances in which it was not uttered. Note that the number of test utterances in which the keyword was uttered was not always 20, since some keywords were uttered less than 20 times in the whole TIMIT test set. Both the discriminative algorithm and the HMM based algorithm was evaluated against the test data. The results are reported as averaged ROC curves in Figure 5.3. The AUC of the ROC curves is 0.99 and 0.96 for the discriminative algorithm and the HMM algorithm, respectively. In order to check whether the advantage over the averaged AUC could be due to a few keyword, we ran the Wilcoxon test. At the 95% confidence level, the test rejected this hypothesis, showing that our model indeed brings a consistent improvement on the keyword set.

The next experiment examines the robustness of the proposed algorithm. We compared the performance of the proposed discriminative algorithm and of the HMM on the WSJ corpus [55]. Both systems were trained on the TIMIT corpus as describe above and tested on the same 80 keywords. For each keyword we randomly picked at most 20 utterances from the si.tr.s portion of the WSJ corpus. The ROC curves are given in Figure 5.4. The AUC of the ROC curves is 0.94 and 0.88 for the discriminative algorithm and the HMM algorithm, respectively. With more than 99% confidence, the Wilcoxon test rejected the hypothesis that the difference between the two models was due to only a few keywords.

A summary of the results of both experiments is given in Table 5.1. Close look on both experiments, we see that the discriminative algorithm outperforms the HMM in terms of AUC. This indeed validates our theoretical analysis that our algorithm maximizes the AUC. Moreover, the discriminative algorithm outperforms the HMM in all point of the
Table 5.1: The AUC of the discriminative algorithm compared to the HMM in the experiments.

<table>
<thead>
<tr>
<th>Corpus</th>
<th>Discriminative Algo. AUC</th>
<th>HMM AUC</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIMIT</td>
<td>0.99</td>
<td>0.96</td>
</tr>
<tr>
<td>WSJ</td>
<td>0.94</td>
<td>0.88</td>
</tr>
</tbody>
</table>

ROC curve, meaning that it has better true positive rate for every given false negative rate.
Chapter 6

Discussion

In this thesis we presented several algorithms that set the basis for a large margin kernel-based acoustic model for continuous speech recognition. We demonstrated the usefulness of different aspects of the acoustic model on the TIMIT corpus. Along the way, we gave theoretical support to the algorithms given, and showed that they minimize the loss over the training set and the test set.

We started with the hierarchical phoneme classifier. We proposed a frame-based multi-class classifier which imposes a notion of “severity” of prediction errors in accordance with a pre-defined hierarchical phoneme structure. We describe online and batch algorithms for solving the constrained optimization problem represents the hierarchical multiclass phoneme classifier. We derived a worst case loss-bound for the online algorithm and provided generalization analysis for its batch counterpart. We demonstrated the merits of our approach with a series of experiments. The algorithm is the basis of the speech-to-phoneme alignment and the keyword spotting algorithms.

Next, we presented a discriminative algorithm for learning a speech-to-phoneme alignment function from a training set of examples. The contribution of our algorithm is twofold. First, we showed for the first time how a large margin algorithm can be used to model the problem of speech-to-phoneme alignment. Second, we presented a simple yet effective algorithm for solving the problem. Our learning algorithm is more efficient than similar
algorithms for large margin sequence prediction (such as [74, 76]), and is most adequate for speech, in which we typically have a large number of training examples. Our learning algorithm is simple to implement and entertains convergence guarantees. Moreover, we showed both theoretical and empirical evidence demonstrating the generalization abilities of our method. Indeed, the experiments reported above suggest that the discriminative training requires fewer training examples than an HMM-based forced-alignment procedure.

A whole sequence phoneme recognition which is based on discriminative supervised learning and Mercer kernels was presented after the speech-to-phoneme alignment. The error of a phoneme recognizer is often measured in terms of the Levenshtein distance (the minimum edit distance operations needed to transform the predicted phoneme sequence to the true one). We proposed an algorithm that directly minimizes the Levenshtein distance over a training set of transcribed examples and showed its generalization performances over unseen data as well. So far, the experimental results we obtained with our method for the task of phoneme recognition are inferior to state-of-the-art results obtained by HMMs. However, while there has been extensive continuous effort on using HMMs for phoneme sequence recognition, our method is rather innovative and the choice of features and kernel operators is by no means comprehensive. We intend to utilize the full power of kernel methods for phoneme recognition by experimenting with additional features and kernels for our task.

Last, we showed an algorithm for keyword spotting in a discriminative way. While current state-of-the-art are mostly based on traditional generative HMM based approaches, we introduced a discriminative approach to keyword spotting, directly optimizing an objective function related to the area under the ROC curve, i.e., the most common measure for keyword spotter evaluation. Compared to state-of-the-art approaches, the proposed model showed to yield a statistically significant improvement over the TIMIT corpus. Furthermore, the very same model trained on the TIMIT corpus but tested on the WSJ corpus also yielded a statistically significant better performance than the HMM based approach.

The algorithms presented in this thesis set the basic building blocks for large margin kernel
based continuous speech recognition. However, there remains a gap to be covered: these algorithms are not sufficiently useful with regards to large vocabulary continuous speech recognition (LVCSR). By LVCSR we mean a speech recognizer that can handle spontaneous speech over a vocabulary size of 10,000 words and above. In the following we give a short description of a kernel-based LVCSR model and discuss some of the open problems in its design and implementation.

Recall that the problem of speech recognition is stated in Equation (1.1) as the problem of finding the most likely sequence of words \bar{w}' given the acoustic feature vectors \bar{x}. In its logarithm form it can be written as

$$\bar{w}' = \text{arg max}_{\bar{w}} \log P(\bar{x}|\bar{w}) + \log P(\bar{w}),$$

where $P(\bar{x}|\bar{w})$ is the probability of the acoustic features given the word sequence known as the acoustic model, and $P(\bar{w})$ is the probability of the sequence of words known as the language model.

In the LVCSR setting our goal is to learn a function, which takes as input an acoustic signal \bar{x} and returns a word sequence \bar{w}. The form of the function we use is

$$\bar{w}' = \text{arg max}_{\bar{w}} w \cdot \phi(\bar{x}, \bar{w}),$$

where $w \in \mathcal{H}$ is a vector of weights in a reproducing kernel Hilbert space \mathcal{H}, and $\phi : X^* \times V^* \rightarrow \mathcal{H}$ is a vector feature function that maps the acoustic signal \bar{x} and a candidate word sequence \bar{w} to the same space \mathcal{H}. In the same spirit of generative LVCSR, this function can be written as a sum of the acoustic model and the language model,

$$\bar{w}' = \text{arg max}_{\bar{w}} w^{\text{acoustic}} \cdot \phi^{\text{acoustic}}(\bar{x}, \bar{w}) + w^{\text{language}} \cdot \phi^{\text{language}}(\bar{w}), \quad (6.1)$$

where both w^{acoustic} and w^{language} are sub-vectors of the vector w. The first term $w^{\text{acoustic}} \cdot \phi^{\text{acoustic}}(\bar{x}, \bar{w})$ in the equation is the acoustic modeling, and it gives confidence for every candidate word sequence \bar{w} and the given acoustic signal \bar{x} that is spoken.
The second term $w_{\text{language}} \cdot \phi_{\text{language}}(\bar{w})$ in Equation (6.1) is the language model. Traditionally, the language model assigns a probability to a sequence of words by means of a probability distribution. In the discriminative setting, the language model gives confidence to a string of words in a natural language. Collins and his colleagues [61] described discriminative language modeling for a large vocabulary speech recognition task which would be suitable for the above setting. Another way to build a discriminative language model is by using prediction suffix trees (PSTs) [24,65] as demonstrated in [56].

The acoustic model and the language model in Equation (6.1) are trained discriminatively together as to minimize the Levenshtein distance between the predicted word sequence and the correct one, as proposed in Chapter 4. We now describe a simple iterative algorithm for learning the weight vectors w_{acoustic} and w_{language}. The algorithm receives as input a training set $S = \{(\bar{x}_1, \bar{w}_1), \ldots, (\bar{x}_m, \bar{w}_m)\}$ of examples. Each example is constituted of a spoken acoustic signal \bar{x}_i and its corresponding word sequence \bar{w}_i. At each iteration the algorithm updates w_{acoustic} and w_{language} according to the ith example in S as we now describe. Denote by \bar{w}_{i-1}' and \bar{w}_{i-1} the value of the weight vectors before the ith iteration. Let \bar{w}'_i be the predicted word sequence for the ith example according to $w_{\text{acoustic}}^{i-1}$ and $w_{\text{language}}^{i-1}$.

\[
\bar{w}'_i = \arg \max_{\bar{w}} w_{\text{acoustic}} \cdot \phi_{\text{acoustic}}(\bar{x}_i, \bar{w}_i) + w_{\text{language}} \cdot \phi_{\text{language}}(\bar{w}_i) . \quad (6.2)
\]

Denote by $\gamma(\bar{w}, \bar{w}')$ the Levenshtein distance between the correct word sequence \bar{w} and the predicted word sequence \bar{w}'. We set the next weight vectors w_{acoustic}^i and w_{language}^i to be the minimizer of the following optimization problem,

\[
\min_{w_{\text{acoustic}} \in H, \xi \geq 0} \frac{1}{2} \|w_{\text{acoustic}} - w_{\text{acoustic}}^{i-1}\|^2 + \frac{1}{2} \|w_{\text{language}} - w_{\text{language}}^{i-1}\|^2 + C\xi \quad (6.3)
\]

s.t. \[w_{\text{acoustic}} \cdot \phi_{\text{acoustic}}(\bar{x}_i, \bar{w}_i) + w_{\text{language}} \cdot \phi_{\text{language}}(\bar{w}_i) - w_{\text{acoustic}} \cdot \phi_{\text{acoustic}}(\bar{x}_i, \bar{w}'_i) - w_{\text{language}} \cdot \phi_{\text{language}}(\bar{w}'_i) \geq \gamma(\bar{w}_i, \bar{w}'_i) - \xi . \]

This process iterates over all training examples in S.
Under some mild technical conditions, it can be shown that the cumulative Levenshtein distance of an iterative procedure, \(\sum_{i=1}^{m} \gamma(\bar{w}_i, \bar{w}'_i) \), is likely to be small. Moreover, it can be shown [12] that if the cumulative Levenshtein distance of the iterative procedure is small, there exists among the vectors \(\{w_1, \ldots, w_m\} \) at least one weight vector which attains small averaged Levenshtein distance on unseen examples as well.

The feature functions \(\phi_{\text{acoustic}}(\bar{x}, \bar{w}) \) gets the acoustic representation, \(\bar{x} \), and a candidate sequence of words, \(\bar{w} \), and returns a scalar which represents the confidence in the suggested word sequence. Such a vector feature function that depends on the candidate word sequence can be hardly found for a small vocabulary recognizer and cannot be found for a large vocabulary recognizer. We would therefore like to express the vector feature function in terms of a candidate phoneme sequence, which is the orthographic transcription of the candidate word sequence. Once we have a vector feature function that depends on a phoneme sequence and on an acoustic signal we can use the set of feature functions and Mercer kernels proposed in Sections 3.7 and 4.4. However, although that set of feature functions is based on a phoneme sequence, it is also based on the start-time sequence. While there is a function that maps a word to a phoneme sequence called pronunciation dictionary, there is no function that can map a word to its correct start-time sequence. One can use the speech-to-phoneme alignment function learned in Chapter 3, but the meaning is another pass on the training set. In fact, we can try to find the best alignment of the phoneme sequence with the speech signal, but that would lead to a non-convex optimization problem, and no theoretical guarantee on the minimization of the Levenshtein distance.

The algorithm presented here is very similar to the one presented for phoneme sequence recognition. The real difference between the two, however, is the way one performs the search. While in the phoneme recognizer, searching over all possible phoneme sequence is feasible with a Viterbi algorithm, in the word sequence recognizer, running over all possible word sequences is not feasible. There are common techniques that efficiently and heuristically handle the search, such as the beam search [34] and the A* stack search [54]. Although both methods are popular in LVCSR systems, they have difficulties in implementing \(n \)-gram language models where \(n \) is larger than 3 (see [38,52] for a detailed discussion). A method
that is suitable for the language model proposed here is the fast match [2].

Throughout this work we assume that each phoneme is represented by a single label. This setting is similar to the monophone HMM setting, in which each phone is represented by a single HMM. In practice, however, contextual effects cause large variations in the way that different phones are produced. Hence, to achieve good phonetic discrimination different HMMs are trained for every context. The simplest and the most common approach is to use triphones, where an HMM is trained for every phone and for every unique pair of right and left neighbors [82].

The main problem implementing triphones is of data sparsity. In a moderate speech dataset not all the possible triphones occur due to data sparsity and due to phontactic constraints of the language\(^1\). Typical HMM is composed of 3 states, each state is modeled by 10 mixtures. Assuming that each mixture is parametrized with mean of 39 elements and diagonal covariance matrix of 39 elements, there are 780 parameters per state. Hence, a system with 60,000 3-states triphones would result in 140 million parameters. Such a big amount of parameters to estimate compared to the low amount of data available is critical in the design of a speech recognizer. In order to overcome this obstacle, part of the states or mixtures of different contexts are tied together, so the data of different contexts is used to estimate shared parameters. Empirically, any triphone HMM system always outperforms a monophone HMM counterpart system. Some researchers, however, believe that the need to define context in HMM system stems from the difficulty to segment the fluent speech into phonemes. They also claim that the phoneme is the only unit has a physical meaning.

Incorporating triphones in our large margin kernel based LVCSR means represent each triphone as a unique label, resulting in \(|P|^3\) labels, where \(|P|\) is the number of phonemes. Since not all the tiphones occur in the dataset, some of the labels will not have enough training point, if any at all. A possible way to overcome this problem might be using the ideas of interclass hypothesis sharing presented in [31], where training examples of biphones and monophones also contribute the learning of the triphone.

\(^1\) Assuming 40 phonemes, there are \(40^3 = 64000\) possible triphones.
Concluding the discussion, we would like to quote a short phrase from a paper by Bourlard, Hermansky and Morgan [7], who claimed that radical innovations are necessary to address the problem of speech recognition:

Permitting an initial increase in error rate can be useful, as long as three conditions are fulfilled:

1. solid theoretical or empirical motivations,
2. sound methodology (so that something can be learned from the results), and
3. deep understanding of state-of-the-art systems and of the specificity of the new approach...

The development of new technologies will often initially result in a significant increase in speech recognition error rates before becoming competitive with or better than the best current systems.
Bibliography

