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A Large Margin Algorithm for Speech-to-Phoneme
and Music-to-Score Alignment

Joseph Keshet, Shai Shalev-Shwartz, Yoram Singer, and Dan Chazan

Abstract—We describe and analyze a discriminative algorithm
for learning to align an audio signal with a given sequence of
events that tag the signal. We demonstrate the applicability of our
method for the tasks of speech-to-phoneme alignment (‘“forced
alignment””) and music-to-score alignment. In the first alignment
task, the events that tag the speech signal are phonemes while in
the music alignment task, the events are musical notes. Our goal
is to learn an alignment function whose input is an audio signal
along with its accompanying event sequence and its output is a
timing sequence representing the actual start time of each event
in the audio signal. Generalizing the notion of separation with a
margin used in support vector machines for binary classification,
we cast the learning task as the problem of finding a vector in an
abstract inner-product space. To do so, we devise a mapping of
the input signal and the event sequence along with any possible
timing sequence into an abstract vector space. Each possible
timing sequence therefore corresponds to an instance vector and
the predicted timing sequence is the one whose projection onto the
learned prediction vector is maximal. We set the prediction vector
to be the solution of a minimization problem with a large set of
constraints. Each constraint enforces a gap between the projection
of the correct target timing sequence and the projection of an
alternative, incorrect, timing sequence onto the vector. Though
the number of constraints is very large, we describe a simple
iterative algorithm for efficiently learning the vector and analyze
the formal properties of the resulting learning algorithm. We
report experimental results comparing the proposed algorithm
to previous studies on speech-to-phoneme and music-to-score
alignment, which use hidden Markov models. The results obtained
in our experiments using the discriminative alignment algorithm
are comparable to results of state-of-the-art systems.

Index Terms—Forced alignment, large margin and kernel
methods, music, speech processing, support vector machines
(SVMs).

1. INTRODUCTION

N THIS paper we describe a new approach for learning
I to align an audio signal with a given sequence of events
associated with the signal. We focus on two applications of the
above task: speech-to-phoneme alignment and music-to-score
alignment. In speech-to-phoneme alignment (“forced align-
ment”) tasks, the events are phonemes and the goal is to predict
the start time of each phoneme in the spoken utterance. In
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music-to-score alignment, we are given a sequence of musical
notes (extracted from a musical score) along with a recording
of the musical piece and the goal is to predict the start time of
each note in the recorded audio signal.

Most of the previous work on speech-to-phoneme and
music-to-score alignment focused on a generative model of
the audio signal using hidden Markov models (HMMs). See,
for example, [1]-[5] and the references therein. Despite their
popularity, HMM-based approaches have several drawbacks
such as convergence of the EM procedure to local maxima and
overfitting effects due to the large number of parameters. In this
paper we propose an alternative approach for learning align-
ment functions that builds upon recent work on discriminative
supervised learning. The advantage of discriminative learning
algorithms stems from the fact that the objective function used
during the learning phase is tightly coupled with the decision
task one needs to perform. In addition, there is both theoretical
and empirical evidence that discriminative learning algorithms
are likely to outperform generative models for the same task
(cf. [6] and [7]). One of the best known discriminative learning
algorithms is the support vector machine (SVM), which has
been successfully applied in speech processing applications
[8]-[10]. The classical SVM algorithm is designed for simple
decision tasks such as binary classification and regression.
Hence, its exploitation in signal processing systems so far has
also been restricted to simple decision tasks such as phoneme
classification and music genre classification. The alignment
problem is more involved, since we need to predict a sequence
of event timings rather than a single number. The main chal-
lenge of this paper is to extend the notion of discriminative
learning to the complex task of alignment.

Our proposed method is based on recent advances in kernel
machines and large margin classifiers for sequences [11]-[13],
which in turn build on the pioneering work of Vapnik and col-
leagues [6], [7]. The alignment function we devise is based on
mapping the audio signal and the sequence of events along with
the target event timing sequence into an abstract vector-space.
Building on techniques used for learning SVMs, our alignment
function distills to a classifier in this vector-space which is
aimed at separating correct timing sequences from incorrect
ones. We describe a simple iterative algorithm for learning
the alignment function and discuss its formal properties. The
specific form of the iterative algorithm stems from recent work
on online algorithms [14] and our analysis is based on a recent
framework for analyzing online algorithms [15].

This paper is organized as follows. In Section II, we formally
introduce the general alignment problem and our two appli-
cations, namely, speech-to-phoneme alignment and music-to-
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score alignment. In Section III we describe a discriminative su-
pervised learning approach for learning an alignment function
from a training set of examples and specifically, in Section IV,
we describe a large margin approach for the alignment problem.
Our specific learning algorithm is described and analyzed in
Section V. The evaluation of the alignment function and the
learning algorithm are both based on an optimization problem
for which we give an efficient dynamic programming procedure
in Section VI. Next, in Sections VII and VIII, we describe the
applicability of our method to speech-to-phoneme alignment
and to music-to-score alignment. We present experimental re-
sults in which we compare our method to alternative state-of-
the-art approaches. Finally, concluding remarks and future di-
rections are discussed in Section IX.

II. THE ALIGNMENT PROBLEM

In the alignment problem, we are provided with a signal
which is accompanied with a discrete sequence of symbols
or events and the goal is to align each of the events in the
tagging sequence with its corresponding position in the signal.
In speech-to-phoneme alignment, the events designate the
phoneme uttered in the signal. In music-to-score alignment, the
events are the notes in the score accompanying the signal. The
alignment problem is the task of finding the start time of each
tagged event in the input signal.

We represent a signal as a sequence of acoustic feature vec-
tors X = (Xi,...,Xr), Where x; is a d-dimensional vector.
For brevity, we denote the domain of the feature vectors by
X C R<. Naturally, the length of the acoustic signal varies from
one signal to another and thus 7' is not fixed. We denote by X'*
the set of all finite-length sequences over X. The sequence of
events is denoted by € = (ey,...,ex), where e, € E for all
1 < k < K and E is the domain of the events. We assume that &/
is a finite set and we denote by E* the set of all finite-length se-
quences over E. In summary, each input is a pair (X, €) where X
is a sequence representing the acoustic signal and € is a sequence
of events that occur in the signal. The alignment of the signal x
with the events € is a sequence of start-times § = (y1, ..., Yx),
where yi, € {1,...,T} is the start-time of the event e, in the
acoustic signal. Our goal is to learn an alignment function, de-
noted f, which takes as input the pair (X, €) and returns an event
timing sequence y. That is, f is a function from X'* x E* to the
set of finite-length sequences over the integers, N*.

In this paper, we focus on two applications of the above gen-
eral setting: speech-to-phoneme alignment and music-to-score
alignment. In both problems, the acoustic representation X is
produced by dividing the acoustic signal into frames of sev-
eral milliseconds, and extracting a d dimensional feature vector
from each frame. In the speech-to-phoneme alignment problem
the feature vector extracted from each frame is the Mel-fre-
quency cepstrum coefficients (MFCC) along with their first and
second derivatives. The sequence of events is a sequence of
phoneme symbols from FE, where FE is the set of 48 Amer-
ican English phoneme symbols as proposed by [16]. We assume
that the acoustic signal is an utterance of the phoneme sequence
€ = (e1,...,ex) and our goal is to find the start time of each
phoneme in the utterance.
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In the music-to-score alignment problem, each acoustic fea-
ture vector x; in the sequence X is produced by calculating the
short time Fourier transform of the ¢th frame of the signal. £
is a set of “note-on” events. Formally, each “note-on” event is
a pair e, = (pg, sx)- The first element of the pair, pr, € P =
{0,1,...,127} is the note’s pitch value (coded using the MIDI
standard). The second element, s, is assumed to be a positive
integer (s € N) as it measures the (theoretical) start time of
the note according to the musical score. Clearly, there are dif-
ferent ways to perform the same musical score. Therefore, the
actual (or observed) start times of the notes in the perceived
audio signal are very likely to be different from the symbolic
start times. Our goal in the music score alignment task is to find
the actual start time of each note in the acoustic signal.

III. DISCRIMINATIVE SUPERVISED LEARNING

In this section, we describe a discriminative supervised
learning approach for learning an alignment function f from
a training set of examples. Each example in the training set
is composed of an acoustic signal, X, a sequence of events, €,
and the true event timing sequence, §. Our goal is to find an
alignment function, f, which performs well on the training set
as well as on unseen examples. First, we define a quantitative
assessment of alignment functions. Let (X,é,y) be an input
example and let f be an alignment function. We denote by
(7, f(Z,€)) the cost of predicting the timing sequence f(X, €)
where the true timing sequence is . Formally, v : N* xN* — R
is a function that gets two timing sequences (of the same length)
and returns a scalar which is the cost of predicting the second
timing sequence where the true timing sequence is the first. We
assume that y(g,7’) > 0 for any two timing sequences g, ¥’
and that (g, y) = 0. An example for a cost function is

A01) = 2 s = i) > ). 1)
In words, the above cost is the average number of times the
absolute difference between the predicted timing sequence and
the true timing sequence is greater than e. Recall that our goal is
to find an alignment function f that attains small cost on unseen
examples. Formally, let Q be any (unknown) distribution over
the domain of the examples, X* x E* x N*. The goal of the
learning process is to minimize the risk of using the alignment
function, defined as the expected cost of f on the examples,
where the expectation is taken with respect to the distribution @

risk(f) = Ezzg)~q [ (9, F(X,€))] .

To do so, we assume that the examples of our training set are
identically and independently distributed (i.i.d.) according to the
distribution (). Note that we only observe the training examples
but we do not know the distribution (). The training set of exam-
ples is used as a restricted window through which we estimate
the quality of alignment functions according to the distribution
of unseen examples in the real world, Q. In the next sections,
we show how to use the training set in order to find an align-
ment function, f, which achieves a small cost on the training
set, and which achieves a small cost on unseen examples with
high probability as well.
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Fig. 1. Tllustration of the constraints in (3). Left: a projection which attains large margin. Middle: a projection which attains a smaller margin. Right: an incorrect

projection.

IV. A LARGE MARGIN APPROACH FOR ALIGNMENT

In this section, we describe a large margin approach for
learning an alignment function. Recall that a supervised
learning algorithm for alignment receives as input a training
set S = {(X1,€1,%1),---5 (XmsEm,Ym)} and returns an
alignment function f. To facilitate an efficient algorithm, we
confine ourselves to a restricted class of alignment functions.
Specifically, we assume the existence of a predefined set of base
alignment feature functions, {¢;}7_,. Each base alignment
feature is a function of the form ¢; : X* x E* x N* — R. That
is, each base alignment feature gets the acoustic representation,
X, and the sequence of events, e, together with a candidate
timing sequence, gy, and returns a scalar which, intuitively,
represents the confidence in the suggested timing sequence
7. The construction of those base alignment features is task
dependent. As an example, let us shortly describe a single
base alignment feature for the speech-to-phoneme alignment
task. This base alignment feature sums a cepstral distance
between the frames x,, 41 and x,,_1 over i = 1,2,...,|7|.
For each ¢, if y; is indeed the correct start time of phoneme ¢,
we expect the distance between x,, 41 and x,,_1 to be large.
On the other hand, if y; does not reflect a true alignment point
then the distance is likely to be small. Naturally, it is naive
to assume that the above base alignment feature can be used
alone for finding the correct timing sequence. However, as our
experiments show, an appropriate combination of a few base
alignment features enables us to accurately predict the correct
timing sequence.

We denote by ¢(x, e, §) the vector in R”™ whose jth element
is ¢;(X, €, 7). The alignment functions we use are of the form

©))

f(i7 é) = argmaxw - ¢(X7 €, y)
]

where w € R™ is a vector of importance weights that we need
to learn. In words, f returns a suggestion for a timing sequence
by maximizing a weighted sum of the confidence scores re-
turned by each base alignment function ¢;. Since f is parame-
terized by w, we use the notation f,, for an alignment function
f, which is defined as in (2). Note that the number of possible
timing sequences, ¥, is exponentially large. Nevertheless, as we
show later, under mild conditions on the form of the base align-
ment functions {¢;}, the optimization problem in (2) can be
efficiently calculated using a dynamic programming procedure.

We now describe a large margin approach for learning the
weight vector w, which defines an alignment function as in (2),
from a training set S = {(X1,€1,%1)s---, (X Em, Im )} Of
examples. Similar to the SVM algorithm for binary classification,
our approach for choosing the weight vector w is based on the
idea of large-margin separation. However, in our case, timing
sequences are not merely correct or incorrect. Instead, the cost
function (7, §') is used for assessing the quality of sequences.
Therefore, we do not aim at separating correct timing sequences
fromincorrect ones butrather try to rank the sequences according
to their quality. Theoretically, our approach can be described as
a two-step procedure: first, we construct a vector ¢(X;, &;,7') in
the vector space R™ based on each instance (X;, &; ) in the training
set S and each possible timing sequence 3’. Second, we find a
vector w € R", such that the projection of vectors onto w ranks
the vectors constructed in the first step above according to their
quality. In Fig. 1, we illustrate three possible timing sequences
for the same input (X, €) and their projection onto w. Ideally,
for each instance (X;, ;) and for each possible suggested timing
sequence 3, we would like the following constraint to hold:

W p(Xi, €, i) — W (X e 7)) > v(7,7). (3)
That is, w should rank the correct timing sequence §; above any
other possible timing sequence §’ by at least y(%;, 7). We refer
to the difference w-¢(X;, &, 4;) —w-@(X;, &;, 9’ ) as the margin
of w with respect to the sequence 7’. Note that if the prediction
of w is incorrect, then the margin is negative. The constraints
in (3) imply that the margin of w with respect to any possible
timing sequence 4’ should be at least the cost of predicting ' in-
stead of the true timing sequence ;. An illustration of a vector
w with sufficient margin (i.e., satisfies the constraints in (3))
is given on the left side of Fig. 1. The plot on the middle of
Fig. 1 illustrates a vector w, which ranks the different timing se-
quences correctly, but without the required margin. The plot on
the right side of Fig. 1 illustrates a vector w which does not rank
the different timing sequences correctly. Naturally, if w ranks
the different possible timing sequences correctly, the margin re-
quirements given in (3) can be satisfied by simply multiplying
w by a large scalar. The SVM algorithm solves this problem by
minimizing 1/2 ||w||? subject to the constraints given in (3).

In practice, it might be the case that the constraints given in
(3) can not be satisfied. To overcome this obstacle, we follow the
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soft SVM approach and define the following hinge-loss function
for alignment

C(wi (%, €0, 9:)) = max (i y') —w
(%8, 9:) — dp(xiv e 7)), @)

where [a] = max{0, a}. The hinge loss measures the maximal
violation of any of the constraints given in (3). The soft SVM
approach for alignment is to choose the vector w*, which min-
imizes the following optimization problem:

* : 1 2 = (e 5. =
w :argv£nln§||w|| +C;£(W7(Xi;ei7yi)) &)

where the parameter C' serves as a complexity-accuracy
trade-off parameter (see [7]). It is easy to verify that the opti-
mization problem in (5) is equivalent to the following quadratic
optimization problem:

min

1 m
w£>0 §”W||2+szi 5-t.
m= i=1
Vi, 7 w-(b(Xi, &, §i) —d(Xi, €, 7)) > (7. 7 ) =& (6)

where each ¢; is a non-negative slack variable that indicates the
loss of the #th example.

Solving the quadratic optimization problem given in (6) is
complicated since the number of constraints is exponentially
large. Several authors suggested specific algorithms for manip-
ulating the exponential number of constraints [11], [13]. How-
ever, these methods are problematic when the size of the dataset
is very large since several passes over the data are required. In
the next section, we propose an alternative method, which visits
each example only once.

V. AN ITERATIVE ALGORITHM

In this section, we describe an iterative algorithm for
learning an alignment function, parameterized by w. Our
iterative algorithm first constructs a sequence of weight vectors
Wi, ..., W, Wn41. The first weight vector is set to be the zero
vector, wi; = 0. On iteration ¢ of the algorithm, we utilize the
ith example of the training set along with the previous weight
vector w;, for defining the next weight vector w;,; as follows.
Let g/ be the timing sequence, which corresponds to the highest
violated margin constraint of the sth example according to w;,
that is

y; = argmaxy(y,9i) — w- ($(%i, €, 9i) — (Xi, €:,9)) - (7)
¥
In Section VI, we provide an algorithm that efficiently calculates
the above optimization problem using dynamic programming.
We set the next weight vector w1 to be the minimizer of the
following optimization problem:

min
weRm £>0

W d(Xi, 8, 0i) — W (Xi,€,70) > v (Ui, Ur) — & (8)

1
§||w —wi||? 4+ C¢ st
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INPUT: training set S = {(X;, &;,Y;) }iq 5
validation set S,, ; parameter C
INITIALIZE: w; =0
Fori=1,...,m
Set: §; = argmax (i, §)—
T W (R85~ $(%i, €0,0))
Set: Ag; = (4,8, i) — H(Xi, €, )
Set: ¢; = max{v(%;,y;) —w - A¢;,0}
Update: w; 1 = w; + min{{;/||A¢;[%, C} Ag;

OUTPUT: The weight vector which achieves the
lowest average cost on the validation set .S,

Fig. 2. Alignment algorithm.

This optimization problem can be thought of as a relaxed version
of the SVM optimization problem with two major differences.
First, we replace the exponential number of constraints from (6)
with a single constraint. This constraint is based on the timing
sequence 7/ defined in (7). Second, we replaced the term ||w||?
in the objective function of the SVM with the term ||w — w;||2.
Intuitively, we would like to minimize the loss of w on the cur-
rent example, i.e., the slack variable &, while remaining as close
as possible to our previous weight vector w;. It can be shown
(see [14]) that the solution to the above optimization problem is

YA

where A@, = ¢(X;, €;,9i) — ¢(Xi, €, Ui)-

The above iterative procedure gives us a sequence of m + 1
weight vectors, Wi, ..., W,,+1. In the sequel we prove that the
average performance of this sequence of vectors is comparable
to the performance of the SVM solution. Formally, let w* be
the optimum of the SVM problem given in (6). Then, we show
in the sequel that setting C' = 1/y/m gives

Wit1 = W; + min {

m

Zf(wi; (Xi,€i,7:)) < % ZZ(W*; (Xi,€i,9i))

=1 =1

1 w2 1

That is, the average loss of our iterative procedure is upper
bounded by the average loss of the SVM solution plus a factor
that decays to zero. However, while each prediction of our it-
erative procedure is calculated using a different weight vector,
our learning algorithm is required to output a single weight
vector, which defines the output alignment function. To over-
come this obstacle, we calculate the average cost of each of the
weight vector wy, ..., W,,11 on a validation set, denoted S,
and choose the one achieving the lowest average cost. We show
in the sequel that with high probability, the weight vector which
achieves the lowest cost on the validation set also generalizes
well. A pseudocode of our algorithm is given in Fig. 2.
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A. Analysis

We now analyze our alignment algorithm from Fig. 2. Our
first theorem shows that the average loss of our alignment algo-
rithm is comparable to the average loss of the SVM solution for
the alignment problem defined in (6).

Theorem 1: Let S = {(X1,€1,71)---,(Xm,Em,Tm)} be a
set of training examples and assume that for all 7 and 37’ we have
that ||@(X;, €;,7')|| < 1/2. Let w* be the optimum of the SVM
problem givenin (6). Let wy, . . ., wy, be the sequence of weight
vectors obtained by the algorithm in Fig. 2 given the training set
S. Then

m m

1 1
— ¥ (Wi (%i,€,7:) < — > L(W* (X, €, Ui
mz (w (Xey))_m;(w (Xi, €:,9i))

1 w2 1
—||lw —C. (10
+C’m” =+ 2 (10)
In particular, if C = 1/y/m, then

m 1 m
C(wis (Riyei, 4i) < — > L(W"(Ri, €4, Ui
; (wi; ( )< — ; (w5 ( )
+ﬁ <||w*||2 - %) . an

The proof of this theorem is based on [15, Theor. 2] and is given
in the Appendix.

The next theorem tells us that the output alignment function
of our algorithm is likely to have good generalization properties.

Theorem 2: Under the same conditions of Theorem 1. As-
sume that the training set S and the validation set S, are both
sampled i.i.d. from a distribution (). Denote by m,, the size of
the validation set. Assume in addition that v(%, §’) < 1 for all
7 and 7. Let w be the output weight vector of the algorithm
in Fig. 2 and let f,, be the corresponding alignment function.
Then, with probability of at least 1 — §, we have that

1
m

risk( fu) < %Zﬂ(w*; (X4, €, 7i))
N w1 + 1 + /2In(2/6) N V/2In(2m/6)
NG Vi

The proof of this theorem is based on [17, Prop. 1] and is also
given in the Appendix.

As mentioned before, the learning algorithm we present in
this paper share similarities with the SVM method for struc-
tured output prediction [11], [13]. Yet, the weight vector re-
sulted by our method is not identical to the one obtained by di-
rectly solving the SVM optimization problem. We would like
to note in passing that our generalization bound from Theorem
2 is comparable to generalization bounds derived for the SVM
method (see, for example, [11]). The major advantage of our
method over directly solving the SVM problem is its simplicity
and efficiency.

To conclude this section, we would like to emphasize the
role of the function « in our model. Recall that the risk of
an alignment function is defined to be the expected value of

12)
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(¥, f(X,€)). The constraints we imposed in (6) were con-
structed so that the risk will be small. Naturally, the specific
choice of the function v is problem dependent. One possible
choice is to simply set (7, §’) tobe 1 if § # 3’ and 0 otherwise.
This choice might lead to poor results in the alignment setting
since it is likely that any function f will not find the exact
correct alignment. For example, the above definition for vy will
give the worst possible risk (1) to an alignment function that
predicts correctly 99% of the alignment points, while such an
alignment function is usually considered to perform very well.

VI. EFFICIENT EVALUATION OF THE ALIGNMENT FUNCTION

So far, we have put aside the problem of evaluation time of
the function f given in (2). Recall that calculating f requires
solving the following optimization problem:

f(x,e) = argmaxw - §(X, €,7).
g

Similarly, we need to find an efficient way for solving the maxi-
mization problem given in (7). A direct search for the maximizer
is not feasible since the number of possible timing sequences,
1, is exponential in the number of events. Fortunately, as we
show below, by imposing a few mild conditions on the structure
of the alignment feature functions and on the cost function, -,
both problems can be solved in polynomial time.

We start with the problem of calculating the prediction given
in (2). For simplicity, we assume that each base feature func-
tion, ¢;, can be decomposed as follows. Let 1); be any function
from X* x E* x N? into the reals, which can be computed in
a constant time. That is, v/; receives as input the signal, X, the
sequence of events, €, and three time points. Additionally, we
use the convention yo = 0 and y|5|41 = 7'+ 1. Using the above
notation, we assume that each ¢; can be decomposed to be

|7l

(bj(ia é7g) = le/}j(77éayi717yi7yi+l)- (13)
=1

The base alignment functions we derive in later sections for
speech-to-phoneme and music-to-score alignment can be de-
composed as in (13).

We now describe an efficient algorithm for calculating the
best timing sequence assuming that ¢; can be decomposed as
in (13). Similar algorithms can be constructed for any base fea-
ture functions that can be described as a dynamic Bayesian net-
work ([11], [18]). Given 7 € {1,...,|e|} and two time indices
t,t' € {1,...,T}, denote by D(i,t,t’) the score for the prefix
of the events sequence 1, ..., 4, assuming that their actual start
times are y1, . .., y;, where y; = ¢’ and assuming that y; 1 = ¢.
This variable can be computed efficiently in a similar fashion
to the forward variables calculated by the Viterbi procedure in
HMMs (see for instance [19]). The pseudo code for computing
D(i,t,t") recursively is shown in Fig. 3. The best sequence of
actual start times, ¢/, is obtained from the algorithm by saving
the intermediate values that maximize each expression in the
recursion step. The complexity of the algorithm is O(|e| |x|?).
However, in practice, we can use the assumption that the max-
imal length of an event is bounded, ¢ —#' < L. This assumption
reduces the complexity of the algorithm to be O(|e| |x|L?).
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INPUT: audio signal X, sequence of events € ;
weight vector w ; maximal length of an event L
INITIALIZE: V(1 <t < L), D(0,¢,0) =0
RECURSION:
Fori=1,...,|e|
Fort=1,...,|X]|
Fort' =t—L,...,t—1

D(i,t,t") ianggqp(zel,t’,t") +w-(R, ettt

TERMINATION: D* = mtfllxD(|é\,T, t')

Fig. 3. Efficient procedure for evaluating the alignment function given in (2).

Solving the maximization problem given in (7) can be per-
formed in a similar manner as we now briefly describe. Assume
that (7, ') can be decomposed as follows:

|71
=1

where 4 is any computable function. For example, for the defini-
tion of v givenin (1), we can set ¥(y;, y;) to be zero if |y; —y!| <
e and otherwise ¥(v;,y;) = 1/|y|. A dynamic programming
procedure for calculating (7) can be obtained from Fig. 3 by re-
placing the recursion definition of D(i,t,t') to

max

D(i,t,t') = pomax

D(Z - 17t/7t”) + fAY(yi+17t)

+w-p(x, et ' t). (14)

To conclude this section we discuss the global complexity
of our proposed method. In the training phase, our algorithm
performs m iterations, one iteration per each training example.
At each iteration, the algorithm evaluates the alignment func-
tion once, updates the alignment function, if needed, and eval-
uates the new alignment function on a validation set of size
m,,. BEach evaluation of the alignment function takes an order of
O(|e| |x|L?) operations. Therefore the total complexity of our
method becomes O(mm,|é| |%|L?). In practice, however, we
can evaluate the updated alignment function only for the last 50
iterations or so, which reduces the global complexity of the al-
gorithm to O(m/|e| |%|L?). In all of our experiments, evaluating
the alignment function only for the last 50 iterations was found
empirically to give sufficient results. Finally, we compare the
complexity of our method to the complexity of other algorithms
which directly solve the SVM optimization problem given in
(6). The algorithm given in [11] is based on the SMO algorithm
for solving SVM problems. While there is no direct complexity
analysis for this algorithm, in practice it usually required at least
m? iterations which results in a total complexity of the order
O(m?|e| |x|L?). The complexity of the algorithm presented in
[13] depends on the choice of several parameters. For reason-
able choice of these parameters, the total complexity is also of
the order O(m?|e| |x|L?).

IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 15, NO. 8, NOVEMBER 2007

VII. SPEECH-TO-PHONEME ALIGNMENT

In this section, we present the implementation details of our
learning approach for the task of speech-to-phoneme alignment.
Recall that our construction is based on a set of base alignment
functions, {¢; }?:1, which maps an acoustic-phonetic represen-
tation of a speech utterance as well as a suggested phoneme
start time sequence into an abstract vector-space. All of our base
alignment functions are decomposable as in (13) and therefore
it suffices to describe the functions {v;}. We start the section
by introducing a specific set of base functions, which is highly
adequate for the speech-to-phoneme alignment problem. Next,
we report experimental results comparing our algorithm to al-
ternative state-of-the-art approaches.

A. Base Alignment Functions

We utilize seven different base alignment functions (n = 7).
These base functions are used for defining our alignment func-
tion f(X,e) as in (2).

Our first four base functions aim at capturing transitions be-
tween phonemes. These base functions are based on the dis-
tance between frames of the acoustical signal at two sides of
phoneme boundaries as suggested by a phoneme start time se-
quence y. The distance measure we employ, denoted by d, is
the Euclidean distance between feature vectors. Our underlying
assumption is that if two frames, x; and x4, are derived from
the same phoneme then the distance d(x¢, x4/ ) should be smaller
than if the two frames are derived from different phonemes. For-
mally, our first four base functions are defined as

je{1,2,3,4}.
(15)

1/}]'(5(7 €, yi—l;y'hyi-l-l) = d(xyi—j7xyi+j) )

If y is the correct timing sequence then distances between
frames across the phoneme change points are likely to be large.
In contrast, an incorrect phoneme start time sequence is likely
to compare frames from the same phoneme, often resulting
small distances. Note that the first four base functions described
above only use the start time of the sth phoneme and does not
use the values of y;,_; and y;11.

The fifth base function we use is based on the framewise
phoneme classifier described in [20]. Formally, for each
phoneme event e € P and frame x € X, there is a confi-
dence, denoted g.(x), that the phoneme e is pronounced in the
frame x. The resulting base function measures the cumulative
confidence of the complete speech signal given the phoneme
sequence and their start-times

Yip1—1
’l/}5(i7é7yi*17yiayi+1>: Z ggi(Xt>-

t=y;

(16)

The fifth base function use both the start time of the sth phoneme
and the (7 + 1)th phoneme but ignores v;_1.

Our next base function scores timing sequences based on
phoneme durations. Unlike the previous base functions, the
sixth base function is oblivious to the speech signal itself. It
merely examines the length of each phoneme, as suggested by
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1y, compared to the typical length required to pronounce this
phoneme. Formally

¢6(i7 €, Yi—1,Yi; yi+1) = log./\f (y'i-i-l = Yi; /Al'eq' ’ a—ﬁi) a7
where NV is a Normal probability density function with mean /i,
and standard deviation &.. In our experiments, we estimated [i.
and . from the entire TIMIT training set, excluding SA1 and
SA?2 utterances.

Our last base function exploits assumptions on the speaking
rate of a speaker. Intuitively, people usually speak in an almost
steady rate and therefore a timing sequence in which speech rate
is changed abruptly is probably incorrect. Formally, let /i. be the
average length required to pronounce the eth phoneme. We de-
note by r; the relative speech rate, r; = (y;+1 — yi)/fie. That s,
r; is the ratio between the actual length of phoneme e; as sug-
gested by ¥ to its average length. The relative speech rate pre-
sumably changes slowly over time. In practice the speaking rate
ratios often differ from speaker to speaker and within a given
utterance. We measure the local change in the speaking rate as
(r; — 7;_1)? and we define the base function 1)7 as the local
change in the speaking rate

Y7(X, €, Yim1, Yis Yir1) = (ri — 1i21)”. (18)

Note that 1); relies on all three start-times it receives as an input,
Yi—1,Yi» Yit1-

B. Experiments

To validate the effectiveness of the proposed approach, we
performed experiments with the TIMIT corpus. We first divided
the training portion of TIMIT (excluding the SA1 and SA2 ut-
terances) into three disjoint parts containing 500, 100, and 3093
utterances, respectively. The first part of the training set was
used for learning the functions g., [(16)], which defines the base
function 5. Those functions were learned by the algorithm de-
scribed in [20] using the MFCC + A + AA acoustic features
[21] and a Gaussian kernel (0 = 6.24 and C = 5.0). The second
set of 100 utterances formed the validation set needed for our
alignment algorithm as described in Section V. Finally, we ran
our iterative alignment algorithm on the remaining utterances in
the training set. The value of ¢ in the definition of v was set to
be 1 (i.e., 10 ms).

‘We evaluated the learned alignment functions on both the core
test set and the entire test set of TIMIT. We compare our results
to the results reported by Brugnara et al. [1] and the results ob-
tained by Hosom [2]. The results are summarized in Table I. For
each tolerance value 7 € {10 ms, 20 ms, 30 ms, 40 ms}, we
counted the number of predictions whose distance to the true
boundary, ¢ = |y; — v4, is less than 7. As can be seen in the
table our discriminative large margin algorithm is comparable
to the best results reported on TIMIT. Furthermore, we found
out in our experiments that the same level of accuracy is ob-
tained when using merely the first 50 utterances (rather than the
entire 3093 utterances that are available for training).

Our alignment function is based on the weight vector w that
determines the linear combination of base alignment functions.
It is therefore interesting to observe the specific weights w gives
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TABLE I
PERCENTAGE OF CORRECTLY POSITIONED PHONEME BOUNDARIES,
GIVEN A PREDEFINED TOLERANCE ON THE TIMIT CORPUS
t<10ms ¢t<20ms t<30ms t<40ms
TIMIT core test-set
Discrim. Alignment 79.7 92.1 96.2 98.1
Brugnara et al. [1] 75.3 88.9 94.4 97.1
Hosom [2] 92.57
TIMIT entire test-set
Discrim. Alignment 80.0 92.3 96.4 98.2
Brugnara et al. [1] 74.6 88.8 94.1 96.8
TABLE 11

PERCENTAGE OF CORRECTLY POSITIONED PHONEME BOUNDARIES
FOR EACH ELEMENT OF THE VECTOR W

t<10ms t<20ms t<30ms t<40ms
w1 7.6 9.9 12.5 15.1
wo 8.3 11.8 15.2 18.7
w3 8.2 12.3 15.9 19.2
wy 6.7 94 12.0 14.9
ws 77.0 88.8 93.6 95.5
we 12.6 19.2 26.2 33.1
wr 12.2 18.3 24.9 31.3
w 79.7 92.1 96.2 98.1

to each of the base alignment functions after the training phase.
Since the training algorithm depends on the order of examples in
the training set, we ran the algorithm on several random permu-
tations of the same training set and average the resulting weight
vector. The resulting vector was found to be

w = (0.17788,0.0093, —2.82 x 1072,
0.0087,0.9622,1.41 x 107°,0.15815). (19)

We also calculated the standard deviation of each element of w.
The standard deviation was found to be almost O for all the ele-
ments of the weight vector, indicating that our training algorithm
is rather stable and the resulting weight vector does not depend
on the order of examples in the training set. It is also apparent
that the weight of the fifth base alignment function is dominant.
To remind the reader, the fifth base alignment function corre-
sponds to the frame-wise phoneme classifier. The domination of
this feature calls for a comparison between the performance of
each single feature to the performance of our method that com-
bined together all the features. In Table II, we report the perfor-
mance of each of the single base alignment features. We again
see that the fifth base alignment function is most effective. The
accuracy of this single feature is inferior to the accuracy of our
combined method roughly by 3%. When using an alternative
single-base alignment function, we obtain rather poor results.
The advantage of our method is that it combines the features to-
gether to obtain the best performing alignment function.

VIII. MUSIC-TO-SCORE ALIGNMENT

In this section, we present the implementation details of our
learning approach for the task of music-to-score alignment. We
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start the section by introducing a specific set of base align-
ment functions which is highly adequate for the music-to-score
alignment problem. Next, we report experimental results com-
paring our algorithm to an alternative generative method for
score alignment.

A. Base Alignment Functions

We utilize ten different base alignment functions (n = 10).
Recall that each note-on event in the music-to-score alignment
problem is a pair e = (p, s), where p is the pitch of the note and
s is the (theoretical) start time of the note. Our first nine base
alignment functions ignore the value of s and thus, for these fea-
tures, 1); only depends on X, p, and §. Intuitively, the first nine
base alignment functions measure the confidence that a pitch
value p; starts at time index y; of the signal.

We now describe the specific form of each of the
above base functions, starting with ;. The function
¥1(X, € Yi—1,Yi, Yir1) measures the energy of the acoustic
signal at the frame x,, and the frequency corresponding to the
pitch p;. Formally, let F),, denotes a band-pass filter with a
center frequency at the first harmony of the pitch p; and cutoff
frequencies of 1/4 tone below and above p;. Concretely, the
lower cutoff frequency of F),, is 440 - 2(pi=57=0.5)/12 H; and
the upper cutoff frequency is 440 - 2(Pi =57+0:5)/12 15 \where
p; € P ={0,1,...,127} is the pitch value (coded using the
MIDI standard) and 440 - 2(P:=57)/12 is the frequency value in
Hz associated with the codeword p;. Similarly, 1, and 3 are
the output energies of bandpass filters centered at the second
and third pitch harmonics, respectively. All the filters were
implemented using the fast Fourier transform.

The above three local templates {1/1]-}?:1 measure energy
values for each time y;. Since we are interested in identifying
notes onset times, it is reasonable to compare energy values at
time y; with energy values at time y; — 1. However, the (discrete)
first-order derivative of the energy is highly sensitive to noise.
Instead, we calculate the derivatives of a fitted second-order
polynomial of each of the above local features. (This method
is also a common technique in speech processing systems [19].)
Therefore, the next six local templates, {1/1]-}?=4, measure the
first and second derivatives of the energy of the output signal of
the three filters around the first three harmonics of p;.

While the first nine base alignment functions measure con-
fidence of timing sequences based on spectral properties of the
signal, the last alignment feature captures the similarity between
5 and §. Formally, let

= Yi+1 — Yi (20)

Si+1 — 8

be the ratio between the ith interval, according to ¥, to the in-
terval according to 5. We also refer to r; as the relative tempo.
The sequence of relative tempo values is presumably constant in
time, since § and g represent two performances of the same mu-
sical piece. However, in practice the tempo ratios often differ
from performance to performance and within a given perfor-
mance. The local template 1)1 measures the local change in the
tempo

P10(X, €, Yi—1,Yi, Yit1) = (15 — Ti—1)2-
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The relative tempo of (20) is ill-defined whenever s; 1 — s; 1S
zero (or relatively small). Since we deal with polyphonic mu-
sical pieces, very short intervals between notes are rather rele-
vant. Therefore, we define the tempo r; as in (20) but confine
ourselves to indices ¢ for which s;41 — s; is greater than a pre-
defined value 7 (in our experiments we set 7 = 60 ms). Thus,
if s;y1 —s; <Tors; —s;—; < 7,then we set psiyg to be zero.

B. Experiments

We now describe experiments with our alignment algorithm
for the task of score alignment of polyphonic piano musical
pieces. Specifically, we compare our alignment algorithm to
a generative method which is based on a generalized HMM
(GHMM). The details of the GHMM approach can be found in
[22]. This GHMM method is closely related to graphical model
approaches for score alignment, first proposed by Raphael [23],
[24]. We would like to note in passing that more advanced algo-
rithms for real-time score alignment have been suggested (see,
for example, [25] and the references therein). In our experi-
ments we focus on the basic comparison between the discrim-
inative and generative approaches for score alignment. Recall
that our alignment algorithm uses a training set of examples for
deducing an alignment function. We downloaded 12 musical
pieces from http://www.piano-midi.de/mp3.php, where sound
and MIDI were both recorded. Here, the sound serves as the
acoustical signal X and the MIDI is the actual start times . We
also downloaded other MIDI files of the same musical pieces
from a variety of other web-sites and used these MIDI files for
creating the sequence of events €. The complete dataset we used
is available from www.cs.huji.ac.il/shais/alignment.

In the score alignment problem we report the average align-
ment error, that is, we set

L
(5,9 = 7l lyi — vil -
=1

Since this dataset is rather small, we ran our iterative algorithm
given in Fig. 2 on the training set several times and choose the
alignment function which minimizes the error on the training
set. We used the leave-one-out (LOO) cross-validation proce-
dure for evaluating the test results. In the LOO setup the algo-
rithms are trained on all the training examples except one, which
is used as a test set. The error between the predicted and true
start times is computed for each of the algorithms. The GHMM
approach uses a Gaussian Mixture Model (GMM) for modeling
some of the probabilities. The number of Gaussians used by the
GMM needs to be determined. We used the values of 1, 3, 5,
and 7 as the number of Gaussians and we denote by GHMM-n,
the resulting generative model with n Gaussians. In addition, we
used the EM algorithm to train the GMMs. The EM algorithm
converges to a local maximum, rather than to the global max-
imum. A common solution to this problem is to use a random
partition of the data to initialize the EM. In all our experiments
with the GMM we used 15 random partitions of the data to ini-
tialize the EM and chose the one that leads to the highest like-
lihood. The LOO results for each of the 12 musical pieces are
summarized in Table III. As seen from the table, our discrim-
inative learning algorithm outperforms all the variants of the
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TABLE III
SUMMARY OF THE LOO Lo0SS (IN ms) FOR DIFFERENT
ALGORITHMS FOR MUSIC-TO-SCORE ALIGNMENT

GHMM-1 GHMM-3 GHMM-5 GHMM-7 Discrim.

1 10.0 188.9 492 69.7 8.9

2 153 159.7 312 20.7 9.1

3 225 48.1 294 37.4 17.1
4 12.7 29.9 152 17.0 10.0
5 54.5 82.2 55.9 533 41.8
6 12.8 46.9 26.7 23.5 14.0

7 336.4 75.8 30.4 433 9.9
8 11.9 242 15.8 17.1 114
9 11473 11206 51.6 12927 20.6
10 16.3 60.4 16.5 20.4 8.1
11 22.6 39.8 27.5 19.2 124
12 134 14.5 13.8 28.1 9.6
mean 1000.1 998.1 30.3 1106.4 14.4
std 3159 3078.3 14.1 3564.1 9.0
median 15.8 542 28.5 25.8 10.7

GHMM method in all of the experiments. Moreover, in all but
two of the experiments the error of the discriminative algorithm
is less than 20 ms, which is the length of an acoustic frame in our
experiments, thus it is the best accuracy one can hope for this
time resolution. It can be seen that the variance of the LOO loss
obtained by the generative algorithms is rather high. This can be
attributed to the fact that the EM algorithm converges to a local
maximum which depends on initialization of the parameters.

IX. CONCLUSION

We presented a discriminative algorithm for learning an
alignment function from a training set of examples. The pro-
posed approach is based on recent advances in large margin
classifiers. The contribution of our algorithm is twofold. First,
we showed how the tasks of speech-to-phoneme alignment
and music-to-score alignment can be cast as large margin
problems. Second, we presented a simple and effective al-
gorithm for solving the induced large margin problem. Our
learning algorithm is more efficient than similar algorithms for
large margin sequence prediction, such as [11] and [13], and
is thus more adequate for speech and audio applications, in
which we typically have a large number of training examples.
Our learning algorithm is simple to implement and entertains
convergence guarantees. Moreover, we have shown both theo-
retical and empirical evidence demonstrating the generalization
abilities of our method. Indeed, the experiments reported above
suggest that the discriminative training requires fewer training
examples than an HMM-based speech-to-phoneme alignment
procedure. We are currently investigating generalizations of
the framework to more demanding tasks in which a sequence
constituents should also be predicted, as is the case in phoneme
recognition and music transcription.

APPENDIX

Proof of Thm. 1

Our proof relies on [15, Theor. 2]. We
struct a sequence of binary classification

first con-
examples,
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define the following classification hinge-loss:
£;(w) = max {v (g, 9;) = w - Ag;, 0}

The implication in [15, Theor. 2] is that the following bound
holds for all w € R™:

m . 1 m .
;u(a(wn) < Slwl?+ ;mw) 1)

u(a) = % (mm{a,C} (a - %min{a,C})) .

Let w* denote the optimum of the alignment problem given
by (6). The bound of (21) holds for any w and in partic-
ular for the optimal solution w*. Furthermore, the defini-
tion of ¢S implies that £5(w*) < {4(w*;(X;,€;,7;)) and
L8(w;) = U(wy; (X4, 8, 7;)) for all 4. Using the latter two facts
in (21) gives that

> <4<wi;(xi,ei,ym)séuw*n%;z(w*;(Xi,ei,yi))_
(22)

By definition, the function y is bounded below by a linear func-
tion, that is, for any a > 0

1
w(a) > a— 50.

Using the lower bound with the argument ¢(w;; (X;, €;, 9;)) and
summing over i, we obtain

S (wi (%2, 22,00) — 5 Om < 3 (£ (wis (56,22,
=1 =1

Combining the above inequality with (22) and rearranging terms
gives the bound stated in the theorem and concludes our proof.m

Proof of Thm 2
Denote by f1, ..., fm the alignment prediction functions cor-
responding to the weight vectors wq, . .., w,, that are found by

the alignment algorithm. Proposition 1 in [17] implies that with
probability of at least 1 — 6; the following bound holds:

N 1 & V2In(1/6)
— k(fi) < — Ui, Ji(Xi, € B
— D risk(fi) < — %y (5 filxi, @) + T

1=1 =1
By definition, the hinge-loss ¢(w;; (X;,€;,%;)) bounds from
above the loss (%;, fi(Xi,&;)). Combining this fact with
Theorem 1, we obtain that

1 m 1 m
- i )< *(Xi, i, Ts
TS € (s (5 )

[W*” + 3 + v2In(1/61)

+ T .

The left-hand side of the above inequality upper bounds
risk(f), where b = arg min, risk(f;). Therefore, among the
finite set of alignment functions, ' = {f1,..., fm}, there
exists at least one alignment function (for instance the function
fv) whose true risk is bounded above by the right hand side of

(23)
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(23). Recall that the output of our algorithm is the alignment
function fy € F, which minimizes the average cost over the
validation set S,,. Applying Hoeffding inequality together with
the union bound over F', we conclude that with probability of
at least 1 — 6o

21 )
risk(fw) < risk(fp) + 2In(m/8z)
My
where, to remind the reader, m,, = |S,|. We have therefore

shown that with probability of at least 1 — §; — d5, the following
inequality holds:

risk(fw) < %ZK(W*§ (X, €i,9i))
+||W*||2 + % + \/21n(1/51) n \/2 1n(m/52)
v Vi

Setting 61 = 82 = /2 concludes our proof. [ |
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