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Abstract

This paper proposes a new approach for keyword spotting,
which is not based on HMMs. The proposed method employs
a new discriminative learning procedure, in which the learn-
ing phase aims at maximizing the area under the ROC curve,
as this quantity is the most common measure to evaluate key-
word spotters. The keyword spotter we devise is based on non-
linearly mapping the input acoustic representation of the speech
utterance along with the target keyword into an abstract vector
space. Building on techniques used for large margin methods
for predicting whole sequences, our keyword spotter distills to
a classifier in the abstract vector-space which separates speech
utterances in which the keyword is uttered from speech utter-
ances in which the keyword is not uttered. We describe a simple
iterative algorithm for learning the keyword spotter and discuss
its formal properties. Experiments with the TIMIT corpus show
that our method outperforms the conventional HMM-based ap-
proach.

1. Introduction

Keyword (or word) spotting refers to a proper detecting of any
occurrence of a given word in a speech signal. Most previous
work on keyword spotting has been based on hidden Markov
models (HMMs). See for example [1, 2, 3] and the references
therein. Despite their popularity, HMM-based approaches have
several known drawbacks such as convergence of the training
algorithm (EM) to a local maxima, conditional independence
of observations given the state sequence and the fact that the
likelihood is dominated by the observation probabilities, often
leaving the transition probabilities unused. However, the most
acute weakness of HMMs for keyword spotting is that they do
not aim at maximizing the detection rate of the keywords.

In this paper we propose an alternative approach for key-
word spotting that builds upon recent work on discriminative
supervised learning and overcomes some of the inherent prob-
lems of the HMM-based approaches. The advantage of discrim-
inative learning algorithms stems from the fact that the objective
function used during the learning phase is tightly coupled with
the decision task one needs to perform. In addition, there is both
theoretical and empirical evidence that discriminative learning
algorithms are likely to outperform generative models for the
same task (see for instance [4, 5]). One of the main goals of
this work is to extend the notion of discriminative learning to
the task of keyword spotting.

Our proposed method is based on recent advances in ker-
nel machines and large margin classifiers for sequences [6, 7],
which in turn build on the pioneering work of Vapnik and col-
leagues [4, 5]. The keyword spotter we devise is based on non-

linear mapping the speech signal along with the target keyword
into a vector-space endowed with an inner-product. Our learn-
ing procedure distills to a classifier in this vector-space which
is aimed at separating the utterances in which the keyword is
uttered from those in which the keyword is not uttered. On this
aspect, our approach is hence related to support vector machine
(SVM), which has already been successfully applied in speech
applications [8, 9]. However, the model proposed in this paper
is different from a classical SVM since we are not addressing a
simple decision task such as binary classification or regression.
Our algorithm is in fact closer to recent work on kernel machine
methods for sequence prediction, such as [10, 6, 11], with the
main difference that we avoid the costly optimization problems
introduced by such models. Instead, we propose an efficient it-
erative algorithm for learning a discriminative keyword spotter
by traversing the training set a single time.

This paper is organized as follows. In Sec. 2 we formally
introduce the keyword spotting problem. We then present an
iterative algorithm for keyword spotting in Sec. 3. The imple-
mentation details of our learning approach and the non-linear
set of feature functions we use are presented in Sec. 4. Next,
we present experimental results in Sec. 5. Finally, concluding
remarks and future directions are discussed in Sec. 6.

2. Problem Setting

Any keyword (or word) is naturally composed of a sequence
of phonemes. In the keyword spotting task, we are provided
with a speech utterance and a keyword and the goal is to de-
cide whether the keyword is uttered or not, namely, whether the
sequence of phonemes is articulated in the given utterance.

Formally, we represent a speech signal as a sequence of
acoustic feature vectors X = (x1,...,Xr), Where x; € X C
R forall1 < ¢ < T. We denote a keyword by k£ € K, where
K is a lexicon of words. Each keyword k is composed of a
sequence of phonemes p* = (p1,...,pr), where p; € P for
all1 <1 < L and P is the domain of the phoneme symbols.
We denote by P* the set of all finite length sequences over P.
Our goal is to learn a keyword spotter, denoted f, which takes
as input the pair (X, ;Bk) and returns a real value expressing the
confidence that the targeted keyword k is uttered in X. That is,
f is a function from X* x P* to the set R. The confidence score
outputted by f for a given pair (X, ﬁk) can then be compared to
a threshold b to actually determine whether p* is uttered in X.
Let us further define the alignment between a keyword phoneme
sequence and a speech signal. We denote by s; € N the start
time of phoneme p; (in frame units), and by e; € N the end time
of phoneme p;. We assume that the start time of phoneme p;41
is equal to the end time of phoneme py, that is, e; = s;41 for all



1 <1< L — 1. The alignment sequence 5 corresponding to
the phonemes sequence 7" is a sequence of start-times and an
end-time, 5° = (s1,...,5L,er), where s; is the start-time of
phoneme p; and ey, is the end-time of the last phoneme py..

Our construction is based on a set of predefined non-linear
feature functions {¢;}7_,. Each feature function is of the form
¢; + X*xP*xN* — R. That s, each feature function takes as
input an acoustic representation of a speech utterance x € X",
together with a keyword phoneme sequence 5* € P*, and a
candidate alignment sequence 5 € N*, and returns a scalar in
R which represents the confidence in the suggested alignment
sequence given the keyword 5*. For example, one element of
the feature function can sum the number of times phoneme p
comes after phoneme p’, while other elements of the feature
function may extract properties of each acoustic feature vector
x; provided that phoneme p is pronounced at time ¢. The com-
plete set of the non-linear feature functions we use is described
in Sec. 4.

As mentioned above, our goal is to learn a keyword spotter
f, which takes as input a sequence of acoustic features X, a
keyword ”, and returns a confidence value in R. The form of
the function f we use is

f(>_(7pk) :mgax W¢(i7ﬁk7§) ) (1)

where w € R" is a vector of importance weights that should be
learned and ¢ € R™ is a vector function composed out of the
feature functions ¢;. In other words, f returns a confidence pre-
diction about the existence of the keyword in the utterance by
maximizing a weighted sum of the scores returned by the fea-
ture function elements over all possible alignment sequences.
The maximization defined by Eq. (1) is over an exponentially
large number of all possible alignment sequences. Neverthe-
less, as in HMMs, if the feature functions ¢ are decomposable,
the maximization in Eq. (1) can be efficiently calculated using
a dynamic programming procedure.

The performance of a keyword spotting system is often
measured by the Receiver Operating Characteristics (ROC)
curve, that is, a plot of the true positive (spotting a keyword
correctly) rate as a function of the false positive (mis-spotting
a keyword) rate (see for example [1, 3, 2] and the references
therein). The points on the curve are obtained by sweeping the
decision threshold b from the most positive confidence value
outputted by the system to the most negative one. Hence,
the choice of b represents a trade-off between different opera-
tional settings, corresponding to different cost functions weigh-
ing false positive and false negative errors. Assuming a flat
prior over all these cost functions, a criterion to identify a good
keyword spotting system that would be good on average for all
these settings could be to select the one maximizing the area
under the ROC curve (AUC). In the following we propose an
algorithm which directly aims at maximizing the AUC.

Recall that we would like to obtain an algorithm that max-
imizes the AUC on unseen data. In order to do so, we will
maximize the AUC over a large set of training examples. Let us
consider two sets of examples. Denote by X’ ,j' a set of speech
utterances in which the the keyword £ is uttered. Similarly, de-
note by X~ a set of speech utterances in which the keyword k
is not uttered. The AUC for the keyword k can be written in the
form of the Wilcoxon-Mann-Whitney statistics [12] as
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where 1.y refers to the indicator function and p" refers to the
phoneme sequence corresponding to keyword k. Thus, Ay es-
timates the probability that the score assigned to an utterance
in which the keyword is uttered is greater than the score as-
signed to an utterance in which the keyword is not uttered. The
average AUC over the set of keywords /C can be written as
A= ﬁ > kex Ak. In the next section we describe an iter-
ative algorithm for learning the weight vector w, which aims at
maximizing the average AUC.

3. An Iterative Algorithm

We now describe a simple iterative algorithm for learning the
weight vector w based on a training set of examples. Each ex-
ample in the training set .S is composed of a keyword phoneme
sequence 5, an utterance in which the keyword k is uttered
%t € X7, an utterance in which the keyword k is not uttered
X~ € X, , and an alignment sequence 5" that corresponds to
the location of the keyword in X*. The algorithm receives as
input a set of training examples S = {(p", %}, %, 57)}7,.
and examines each of them sequentially. Initially, we set w =
0. At each iteration i, the algorithm updates w according to the
current example (5, X, X", 57%) as we now describe. Denote
by w;_1 the value of the weight vector before the ith iteration.
Let §' be the predicted alignment for the negative utterance, X,
according to w;_1,

§ = argmax wi_1 - ¢(X; ,p",5) . @)

Let us define the difference between the feature functions of
the acoustic sequence in which the keyword is uttered and the
feature functions of the acoustic sequence in which the keyword
is not uttered as Ag,, that is,
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We set the next weight vector w; to be the minimizer of the
following optimization problem,
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where C' serves as a complexity-accuracy trade-off parameter
(see [13]) and & is a non-negative slack variable, which indi-
cates the loss of the ith example. Intuitively, we would like to
minimize the loss of the current example, i.e., the slack vari-
able &, while keeping the weight vector w as close as possible
to our previous weight vector w;_1. The constraint makes the
projection of the utterance in which the keyword is uttered onto
w higher than the projection of the utterance in which the key-
word is not uttered onto w by at least 1. It can be shown (see
[13]) that the solution to the above optimization problem is

Wi = Wi—1 + ;AP . 4)

The value of the scalar «; is based on the different scores that
%% and X~ received according to w;_1, and a parameter C.
Formally,
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Input: training set S = {(p", %, %, ,5")}1%; valida-
tion set Syal; parameter C'

Initialize: wo = 0

For:=1,...,m

Predict: 5 = arg maxs w;_1 - ¢(i;,pki, 5)

Set: A, = 1= (A(X/, 7™, 5") — (%, , 7", 5))

IfW¢_1 . A(f)l < 1
. 1—wi_1-Ag; }
Set: o; = min {07 —_—
A, |2
Update: w; =w;_1 + ;- Ag;

Output: The weight vector w* which achieves best AUC
performance on the validation set Syai.

Figure 1: An iterative algorithm.

The optimization problem given in Eq. (3) is based on on-
going work on online learning algorithms appearing in [13].
Based on that work, it can be shown that, under some mild
technical conditions, the cumulative performance of the itera-
tive procedure, i.e., % Yo Liw,.aé,>0} is likely to be high.
Moreover, it can further be shown that if the cumulative perfor-
mance of the iterative procedure is high, there exists at least one
weight vector among the vectors {w1, ..., Wy, } which attains
high averaged performance on the test examples as well, that is,
there exists a vector which attains high averaged AUC over a
set of test examples. To find this weight vector, we simply cal-
culate the averaged loss attained by each of the weight vectors
on a validation set. A pseudo-code of our algorithm is given in
Fig. 1.

In the case the user would like to select a threshold b that
would ensure a specific requirement in terms of true positive
rate or false negative rate, a simple cross-validation procedure
(see [14]) would consist in selecting the confidence value given
by our model at the point of interest over the ROC curve plotted
for some validation utterances of the targeted keyword.

4. Non-Linear Feature Functions

In this section we present the implementation details of our
learning approach for the task of keyword spotting. Recall that
our construction is based on a set of non-linear feature func-
tions, {¢;}7—;, which maps an acoustic-phonetic representa-
tion of a speech utterance as well as a suggested alignment se-
quence into an abstract vector-space. In order to make this sec-
tion more readable we omit the keyword index k.

We introduce a specific set of feature functions, which is
highly adequate for the keyword spotting problem. We uti-
lize seven different feature functions (n = 7). These feature
functions are used for defining our keyword spotting function
f(x,p) as in Eq. (1).

Our first four feature functions aim at capturing transitions
between phonemes. These feature functions are the distance be-
tween frames of the acoustic signal at both sides of phoneme
boundaries as suggested by an alignment sequence 5. The
distance measure we employ, denoted by d, is the Euclidean
distance between feature vectors. Our underlying assumption
is that if two frames, x; and x;, are derived from the same
phoneme then the distance d(x¢, x;/) should be smaller than if
the two frames are derived from different phonemes. Formally,

our first four feature functions are defined as
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If 5 is the correct timing sequence then distances between
frames across the phoneme change points are likely to be large.
In contrast, an incorrect phoneme start time sequence is likely
to compare frames from the same phoneme, often resulting in
small distances. Note that the first four feature functions de-
scribed above use only the start time of the ¢th phoneme and do
not use the values of s;,—1 and s;41.

The fifth feature function we use is built from a frame-
wise phoneme classifier described in [15]. Formally, for each
phoneme event p € P and frame x € X, there is a confidence,
denoted gy, (x), that the phoneme p is pronounced in the frame
x. The resulting feature function measures the cumulative con-
fidence of the complete speech signal given the phoneme se-
quence and their start-times,
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The fifth feature function uses both the start time of the ¢th
phoneme and the (¢ + 1)th phoneme but ignores s;_1.

Our next feature function scores timing sequences based on
phoneme durations. Unlike the previous feature functions, the
sixth feature function is oblivious to the speech signal itself.
It merely examines the length of each phoneme, as suggested
by 3, compared to the typical length required to pronounce this
phoneme. Formally,

1Dl
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where N is a Normal probability density function with mean [,
and standard deviation &,. In our experiments, we estimated [,
and &, from the training set (see Sec. 5).

Our last feature function exploits assumptions on the speak-
ing rate of a speaker. Intuitively, people usually speak in an
almost steady rate and therefore a timing sequence in which
speech rate is changed abruptly is probably incorrect. For-
mally, let fi, be the average length required to pronounce the
pth phoneme. We denote by r; the relative speech rate, r; =
(Si+1 — si)/fip,. That is, r; is the ratio between the actual
length of phoneme p; as suggested by 5 to its average length.
The relative speech rate presumably changes slowly over time.
In practice the speaking rate ratios often differ from speaker to
speaker and within a given utterance. We measure the local
change in the speaking rate as (r; — ri_l)z and we define the
feature function ¢~ as the local change in the speaking rate,

Z (Ti - Ti—1)2 . )

S. Experimental Results

To validate the effectiveness of the proposed approach we per-
formed experiments with the TIMIT corpus. We divided the
training portion of TIMIT (excluding the SA1 and SA2 utter-
ances) into three disjoint parts containing 500, 80 and 3116 ut-
terances. The first part of the training set was used for learning
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Figure 2: ROC curves of the discriminative algorithm and the
HMM approach. The AUC of the ROC curves is 0.99 and 0.96
for the discriminative algorithm and the HMM algorithm, re-
spectively.

the functions g, (Eq. (7)), which define the feature function ¢s.
Those functions were learned by the algorithm described in [15]
using the MFCC+A+AA acoustic features and a Gaussian ker-
nel (o = 6.24 and C' = 5.0). The second set of 80 utterances
formed the validation set needed for our keyword spotting algo-
rithm. The set was built out of a set of 40 keywords randomly
chosen from the TIMIT lexicon. The 80 utterances were chosen
by pairs: one utterance in which the keyword was uttered and
another utterance in which the keyword was not uttered. Fi-
nally, we ran our iterative algorithm on the rest of the utterances
in the training set. The value of C was set to be 1.

We compared the results of our method to the HMM ap-
proach, where each phoneme was represented by a simple left-
to-right HMM of 5 emitting states with 40 diagonal Gaussians.
These models were enrolled as follows: first the HMMs were
initialized using K-means, and then enrolled independently us-
ing EM. The second step, often called embedded training, re-
enrolls all the models by relaxing the segmentation constraints
using a forced alignment. Minimum values of the variances
for each Gaussian were set to 20% of the global variance of
the data. All HMM experiments were done using the Torch
package [16]. All hyper-parameters including number of states,
number of Gaussians per state, variance flooring factor, were
tuned using the validation set.

Keyword detection is performed with a new HMM com-
posed of two sub HMM models, the keyword model and the
garbage model. The keyword model is an HMM, which es-
timates the likelihood of an acoustic sequence given that this
sequence represents the keyword phoneme sequence. The
garbage model is an HMM composed of phoneme HMM:s fully
connected with each others, which estimates the likelihood of
any acoustic sequence. The overall HMM fully connects the
keyword model and the garbage model and the best path found
by Viterbi decoding on this overall HMM either passes through
the keyword model (in which case the keyword is said to be ut-
tered) or not (in which case the keyword is not in the acoustic
sequence).

The test set was composed of 80 keywords, distinct from
the keywords of the training and validation set. For each key-
word, we randomly picked at most 20 utterances in which the
keyword was uttered and at most 20 utterances in which it was
not uttered. The number of test utterances in which the keyword
was uttered was not always 20, since some keywords were ut-

tered less than 20 times in the whole TIMIT test set. Both the
discriminative algorithm and the HMM based algorithm have
been evaluated against this data and their results are reported as
averaged ROC curves in Fig. 2. The AUC of the ROC curves
is 0.99 and 0.96 for the discriminative algorithm and the HMM
algorithm, respectively. In order to check whether the advan-
tage over the averaged AUC could be due to a few keyword, we
ran the Wilcoxon test. At the 95% confidence level, the test re-
jected this hypothesis, showing that our model indeed brings a
consistent improvement on the keyword set.

6. Conclusions

In this work, we introduced a discriminative approach to key-
word spotting. We adopted a large-margin formulation of the
problem and proposed a model relying on an objective function
related the area under the ROC curve, i.e., the most common
measure for keyword spotter evaluation. Compared to state-
of-the-art approaches which mostly rely on generative HMM
models, the proposed model has shown to yield an improve-
ment over the TIMIT corpus.
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