
Fragmentation Considered Poisonous

Amir Herzberg and Haya Shulman
Department of Computer Science

Bar Ilan University
Ramat Gan, Israel

Email: {amir.herzberg, haya.shulman}@gmail.com

Abstract—We present effective off-path DNS cache poisoning
attacks, circumventing all widely-used defenses against poison-
ing, based on echoing of random challenges from request to
response, e.g., port randomisation and query randomisation
(0x20). The attacks mainly depend on the use of UDP to retrieve
long DNS responses, resulting in packet fragmentation. We
show how attackers are often able to cause such fragmented
responses, and then abuse them to inject fake, ‘poisonous‘
records, into legitimate DNS responses.

Proper adoption of DNSSEC would prevent our poisoning
attacks; however, we show that the (common) partial and per-
missive deployments of DNSSEC, actually facilitate our attacks.
We recommend appropriate steps for DNS deployments to
prevent increased vulnerability to off-path poisoning attacks.

We also introduce a new type of DNS attack: name server
(NS) pinning, forcing resolvers to use name servers of attacker’s
choice. NS pinning can result from poisoning attacks and in
other ways, including by abusing fragmented DNS responses;
such attacks can work even against DNSSEC. NS pinning can
be stepping-stone to other attacks: denial of service, traffic
analysis, covert channels - and even, in some scenarios, DNS
cache poisoning.

We validated our attacks against popular resolvers (Bind
and Unbound), and real DNS name servers on the Internet.

I. INTRODUCTION

The correctness and availability of information in the
Domain Name System are crucial for the operation of the
Internet. DNS poisoning is a significant threat to Internet
security; in particular, it may allow weak attackers, without
Man-in-the-Middle (MitM) or eavesdropping capabilities, to
intercept and modify content, by providing fake destination
IP address, thereby circumventing many defense mecha-
nisms such as Same Origin Policy (SOP), domain blacklists
and domain-policies (e.g., SPF). Poisoning allows attacks
such as phishing, credentials-theft (e.g., XSS), and more.

Defenses against DNS poisoning, can be categorised into
two classes: challenge-response defenses, which rely on
some ‘unpredictable challenge’ values in requests, which
must be echoed in (legitimate) responses; and cryptographic
defenses, which rely on cryptographic authentication (signa-
ture) in responses, most notably the DNSSEC standard [1]–
[3]. DNSSEC uses digital signatures to prevent poisoning of
the DNS responses, and is hence secure even against man-
in-the-middle (MitM) adversaries. DNSSEC had a long and
thorough design and evaluation process, and its security is

based on extensive evaluation by many experts, as well as
on results of formal analysis, e.g., by Bau and Mitchell [4].
(There are also other proposals for cryptographic defenses,
designed to protect against MitM, e.g., DNS Curve [5]).

Cryptography is necessary to protect against a MitM
attacker, who can easily copy any challenge into a fake
response; however, in spite of the awareness that DNS
poisoning can allow severe attacks, so far, DNSSEC deploy-
ment is progressing slowly. One reason may be that, until
Kaminsky’s well-known off-path poisoning attack in 2008
[6], off-path poisoning appeared to be a rather impractical
and inefficient attack; and MitM attackers are considered
rare. Indeed, the efforts to deploy DNSSEC have increased
following Kaminsky’s attack, although, so far, adoption is
still very limited and DNSSEC validation is rarely effective
against poisoning; details within.

Following to the publication of Kaminsky’s attack, the
security of DNS resolvers was enhanced, and most resolvers
were ‘patched’ to defend against it, initially using port and
IP randomisation and ‘birthday protection’. Additional im-
provements were soon published and adopted, in particular
query randomisation by case toggling (‘0x20 encoding’, [7])
and addition of a random prefix to queries [8]; see also
RFC 5452 [9]. As a result, there is a somewhat reduced
momentum to deploy DNSSEC.

We show that, under common scenarios, even an off-path
attacker can efficiently circumvent all of these challenge-
response mechanisms. Namely, an off-path attacker can
perform effective DNS poisoning, circumventing all the
‘patches’, and with even a better efficiency than Kaminsky’s
poisoning technique. While we outline different ‘patches’
that may defend against our attack, the best solution is
obviously to deploy DNSSEC, providing security (even)
against a MitM attacker; we hope that our results will,
indeed, help speed up deployment of DNSSEC, thereby
protecting against attacks by off-path attackers (as in this
paper) as well as by MitM attackers.

Note that there has been a considerable progress with
adoption of DNSSEC, esp. since Kaminsky’s attack (2008);
in particular, many top-level domains (TLDs) as well as
the root already support DNSSEC (i.e., have keys and
provide signatures), and most popular DNS resolvers support

DNSSEC validation. However, only a small fraction1 (about
2%) of the domains are signed, and there are many interoper-
abity problems and concerns. Indeed, for most of the signed
domains (82%), there is no chain of trust from the root zone,
i.e., the key of the child zone is not signed by its parent zone.
In such cases, signatures cannot be validated by DNSSEC-
compliant resolvers, unless additional ‘trust anchor’ keys are
installed in the resolver.

As a result, only a minority of the resolvers currently
apply strict validation of DNSSEC. Based on the measure-
ments reported in [10], about third of resolvers do not apply
DNSSEC at all, and only about 1% of them are validating.
Apparently, the vast majority of resolvers operate in a
permissive mode, where they signal support of DNSSEC,
but do not reject responses which are not signed properly.
Significant additional effort is required to make DNSSEC
fully functional, for most of the domain names and resolvers.

Somewhat ironically, in fact, we show that the current
situation of partial and permissive deployment of DNSSEC,
can actually facilitate our off-path attacks. Specifically, our
attacks require fragmentation of DNS responses; and the
use of DNSSEC results in much longer responses, which
are more likely to be fragmented. Note, however, that
when properly and fully deployed, DNSSEC will prevent
the poisoning attacks, in spite of the fragmentation; also,
note that fragmentation is possible even without DNSSEC,
and indeed, attackers can induce the required fragmentation
(with or without DNSSEC), as we explain within. Still, the
partial (or imperfect/permissive) deployment of DNSSEC,
makes the attacks easier to deploy. This is undesirable;
the introduction of a new security mechanism (DNSSEC),
should not result in increased vulnerability and new attack
vectors, even during the (often long) adoption period; notice
that is stated explicitly as a goal for DNSSEC in RFC 3833
[44].

On the other hand, we identify two attacks, which are
possible even when DNSSEC is fully, and correctly deployed.
Like the DNS poisoning attack, the attacks may be facilitated
due to the use of longer, fragmented DNS responses with
DNSSEC, although there may be other ways for adversaries
to cause the desired fragmentation. These two attacks are
subdomain injection and NS pining.

Subdomain Injection is a special form of poisoning at-
tack, where resolvers accept, cache and provide to clients
a mapping for a non-existing (injected) child domain, of
an existing, potentially DNSSEC-protected, parent domain.
Subdomain injection is possible, when a domain uses the
NSEC3 opt-out option, i.e., refrains from signing separately
each of its unsigned subdomains. This was recognised as a
potential weakness by Bau and Mitchell [4]; however, there
are still many zones using NSEC3 opt-out, for improved

1We computed the statistics for the top 300,000 most popular domains
as listed by Alexa.

Zone DNSSEC Vulnerabilities
Resolver No chain NSEC3 opt-out None
mode of trust
Permissive Domain Domain Domain

Hijacking Hijacking Hijacking
Strict Domain Subdomain NS

Hijacking Injection Pinning

Table I
DNSSEC DEPLOYMENT VULNERABILITIES THAT ALLOW OUR CACHE

POISONING AND NS PINNING ATTACKS (SECTIONS IV AND III
RESPECTIVELY).

efficiency. We show that this attack can be done, even by an
off-path attacker, and does not require a MitM attacker (as
considered by [4]). The injected subdomains allow attacks
on the Same Origin Policy, such as XSS, phishing and cookie
stealing.

In contrast, Name Server (NS) Pinning is a new type
of attack, where the attacker tampers with the selection of
the DNS servers by the resolver for a particular zone, e.g.,
forcing requests to be sent to a particular (vulnerable or fake)
name server. We show that NS pinning can be stepping-
stone to facilitate or improve efficiency of several significant
attacks: denial of service, traffic analysis, covert channels,
and in some scenarios, even DNS cache poisoning. In par-
ticular, NS pining can facilitate DNS poisoning, by causing
resolvers to use specific name servers, possibly known to be
vulnerable; this provides an effective mechanism to deploy
the attack of [11], which, so far, was considered impractical.
NS pinning attacks can be either blocking, i.e., only result in
a resolver avoiding a particular name server, or forcing, i.e.,
forcing the resolver to use a particular name server, typically
pointing to name servers belonging to the attacker. Blocking
is often very easy; indeed, RFC4697 [12] recommends that
resolvers do not contact a name server after few successive
failures, which makes blocking easy - and many resolvers
support this and are hence vulnerable, see [13] (we also
confirmed this for some resolvers, e.g., Unbound). It would
be desirable to extend the security evaluation of DNSSEC
of [4], to cover also NS pinning.

Note that subdomain injection attacks, as well as forcing
NS pinning attacks which map to a fake name server,
are possible due to the fact that DNSSEC-enabled referral
responses contain unsigned delegation NS and A resource
records (RRs). Indeed, Bernstein argued already in 2009 [14]
that DNSSEC is vulnerable since it does not sign the NS and
A delegation records, albeit his argument focused on the
fact that signing top-level domains provides no protection
to (unsigned) second-level domains.

We summarise all our attacks, with their requirements
(discussed above), in Table I. Notice that even the most
severe (and demanding) attack of DNS poisoning, is usually
possible, since it requires only that either the resolver
supports a permissive mode (which currently holds for 99%

of the resolvers, as measured in [10]), or that the zone has
no chain of trust, holding for 82% of the signed domains.

Fragmentation: Fragmentation is known to be problem-
atic or ‘harmful’, mainly due to the negative impact on
performance; see the seminal paper of Kent and Mogul [15].
As a result, fragmentation is usually avoided, e.g., by use
of path MTU discovery [16], [17], mainly for connection-
based transport protocol (TCP). However, DNS traffic is
usually sent over UDP. Several significant name servers,
e.g., com, edu, send long responses over TCP, however,
this is a controversial strategy, since the use of TCP for
DNS responses results in a significant overhead for the name
server, resolver and the network, as well as in additional
latency.

Our work builds upon previous disclosures of vulnera-
bilities due to the design or implementations of the frag-
mentation mechanism; we next mention few of the most
relevant. Zalewski [18] suggested that it may be possible to
spoof a non-first fragment of a (fragmented) TCP packet.
However, using such non-first-fragment injections to TCP
packets seems challenging. Furthermore, currently almost
all TCP implementations use path MTU discovery [16], [17]
and avoid fragmentation.

Several vulnerabilities related to IP fragmentation, and
specifically to predictable fragment identifiers (IP-ID) val-
ues, are covered in [19], [20]; and predictable IP-ID values
were shown [21] to allow interception and injection of
fragments.

Attacker Capabilities: The required attacker capabilities
include an arbitrary off-path, spoofing-only adversary, that
controls a ‘puppet’, i.e., a sandboxed script, [22]; see Fig-
ure 1. The puppet can trigger DNS requests at the resolver,
e.g., by planting images, using HTML IMG or IFRAME
tags, which results in DNS requests to the victim domain;
this phase initiates the attacks.

Figure 1. Simplified network topology and attacker capabilities. The
spoofing attacker uses a puppet to invoke the query.

Contributions: We next summarise the main contributions
of this manuscript.

Identification of efficient DNS cache poisoning attacks,
motivating the deployment of DNSSEC. To ensure security
DNSSEC requires adoption by both the zones and the
resolvers, and hence, deployment has been - and remains
- a significant challenge.

Name Server (NS) pinning - attack and vulnerabilities. We
identify the threat of NS pinning, and show how it may help

facilitate various attacks, in particular, to force the resolver to
stop using a particular name server, and eventually, to query
a name server of attacker’s choice, e.g., a compromised name
server. We also present several NS pinning mechanisms.

Study of IP-ID algorithms. We carried out a study of
the IP-ID allocation algorithms supported by the name
servers (athoritative for top level domains and those used for
106 domains according to Alexa) on the Internet. We also
provide techniques, tailored for name servers, for predicting
the IP-ID values. Our study can be useful for other purposes,
e.g., when designing different mechanisms pertaining to
DNS.

Organisation: In the next section, we explain how attack-
ers can abuse the fragmentation reassembly mechanism, to
modify DNS responses (replacing the second fragment); we
present our study of the IP-ID allocation methods supported
by name servers, and provide techiques for efficient IP-ID
matching. Then, in Section III, we present the NS pinning
attack. Next, in Section IV, we present our DNS cache
poisoning attacks. We conclude and discuss defenses in
Section V.

II. ALTERING DNS RESPONSES VIA FRAGMENT
REASSEMBLY SPOOFING

In this work we show techniques allowing an off-path
attacker to modify the DNS responses from name server
to the resolver; in following section we use this to launch
DNS cache poisoning and name server (NS) pinning attacks.
We show how an off-path attacker can accomplish this
by exploiting fragmented DNS responses. Specifically the
attacker alters the fragment reassembly process by injecting
spoofed second fragments that are reassembled with authen-
tic first fragments, and result in a new modified packet. This
technique requires (1) fragmented DNS responses, it also
requires (2) matching several fields in the IP-header so that
the spoofed fragment is reassembled with the authentic one
and (3) it the process of matching the IP header fields may
require many queries to the DNS resolver.

In Section II-A we show that often attackers can enforce
fragmentation on DNS responses, and we propose different
techniques to achieve that, when (otherwise) DNS responses
are not sufficiently large and do not get fragmented. Then,
in Section II-B we explain the details of fragment reassem-
bly process and the prerequisites to successful fragment
reassembly. In Section II-C we provide details related to
circumventing the caching of the resolver, which allows
issuing multiple queries to some victim domain.

A. Enforcing Fragmentation

Our attacks exploit fragmented DNS responses. Typically
DNSSEC-enabled responses get fragmented. However, not
all DNSSEC-enabled DNS responses get fragmented. We
suggest techniques that can often enforce fragmentation on
those responses. Furthermore, we also suggest a technique

which allows to enforce fragmentation on referral responses,
for plain DNS responses, that support EDNS (but without
DNSSEC). We next present and discuss the techniques
which can assist the attacker in enforcing fragmentation on
DNS responses: (1) DNS query size, (2) DNS query type,
(3) malicious subdomain, (4) spoofed ICMP fragmentation
needed.

1) DNS Query Size: The query field in a DNS packet is
limited to 256 bytes, and can be composed of one or more
labels, i.e., subdomains, such that each label is at most 63
bytes long. In addition one byte is required to encode the
length of a label in a DNS request; if each label is 63 bytes,
the query contains 4 labels. Assuming that the size of the
domain name which the attacker wishes to poison is l bytes,
the attacker can add another 256− l = x bytes to the DNS
response, by padding the query field with x bytes. This can
be useful to many responses which are almost 1500 bytes
long and thus do not get fragmented.

2) DNS Query Type: The attacker may be flexible in the
query type that it can issue. A puppet, i.e., script (e.g., java
script), can issue requests to A type RR. These requests
often also trigger requests to NS RRs, DS RRs and to
DNSKEY RRs. Each of the responses to those requests can
get fragmented. Typically responses to NXDOMAIN (‘non-
existing’ domain) and DNSKEY, get fragmented. Merely
sending an email to a mail server, that supports anti-spam
mechanisms, e.g., SPF, also triggers DNS requests for SPF
and TXT records (in addition to the usual requests to A, NS
and DNSKEY RRs). A zombie, i.e., user (as well as root)
level malware, can issue requests for additional types, e.g.,
ANY RR. DNS responses to ANY RR request are almost
always fragmented for DNSSEC-enabled DNS responses.

In this work we restrict ourselves to the weakest attacker,
that controls a puppet on the victim network, and can send
requests for A RR (which also trigger requests to other
records, e.g., DNSKEY); all our attacks in this work are
conducted using a puppet. As evident from Figure 2 a zom-
bie can almost always inflict fragmentation, by triggering
ANY type DNS requests.

See Figure 2, for a study of the DNS responses’ sizes to
A and ANY RR DNS requests to subdomains in gov TLD.

3) Malicious Sub-Domain: We suggest a technique which
can expand the DNS referral responses so that they are
fragmented. Let tld be the top level domain that the attacker
wishes to spoof; the same idea applies to second (and lower)
level domains. The attacker creates a new subdomain of tld,
e.g., attacker.tld, and inserts a maximal number of delega-
tion records into the parent domain, i.e., tld. The maximal
number of delegation records depends on the registrar, e.g.,
Network Solutions (servicing many top level domains, e.g.,
de) as well as other registrars, e.g., of com, net, limit the
number of NS, A and DS records, that the child can add to
the parent zone, to 13 each; (this includes domains such as,

Figure 2. Length of ANY and NXDOMAIN responses of gov domains.
Domains taken from [32]

com, net, de).
We next provide calculations for the DNS response size,

based on the standard and typical values. First, every DNS
responses contains headers, and the size of the headers
(in all TCP/IP layers) including DNS, is 54 bytes. Then
the DNS payload contains four sections: (1) question,
(2) answer, (3) authority and (4) additional; the
additional section also contains the EDNS RR which is
typically 11 bytes long.

The question section can be up to 260 bytes, and
currently only a single question, per DNS packet, is sup-
ported. The answer section is not present in referral type
responses. The authority section contains NS, DS (or
NSEC/NSEC3) and RRSIG records; and the additional
section contains A (IPv4) and AAAA (IPv6) records (and
typically these delegation records are not signed therefore
no RRSIG records will be present in additional section
in referral responses).

In Table II we present calculations for different sizes of
(DNSSEC-enabled as well as plain) DNS referral responses,
ranging from average to maximal, i.e., (each) containing six
and thirteen NS, A and AAAA records respectively. As can
be seen from the table, the responses are above 1500 bytes
and thus will get fragmented. Note that we assumed that only
two DS records are used in a response, and one signature;
more DS records (as well as more signatures) are common in
referral DNS responses, e.g., some of gov domains use more
than ten DS records. In this attack the domain name that the
attacker creates is not required to be large (although a large
domain name will further exacerbate the problem). The main
factor that induces the expansion factor is the name of the
NS records, i.e., name servers. Specifically, by adjusting the
names of DNS servers the attacker can inflict fragmentation
on the referral DNS responses (supporting EDNS). There is
no limitation (beyond 256 bytes) that is recommended or
enforced on the name field in resource records.

4) Spoofed ICMP Fragmentation Needed: In contrast
to other techniques, which attempt to increase the DNS
response size, this technique reduces the MTU to the tar-

Records NS DS RRSIG A AAAA DNS Payload IP Packet Size
(w/EDNS) Size (bytes) w/Headers (bytes)

RR size (bytes) 268 (20 - 30) (160 - 260) 16 28
Average response w/DNSSEC 6 · 268 (20 + 30) 260 6 · 16 6 · 28 2193 2247
Maximal response w/DNSSEC 13 · 268 13 · 30 260 13 · 16 13 · 28 4717 4771
Average response size 6 · 268 0 0 6 · 16 6 · 28 1883 1937
Maximal response size 13 · 268 0 0 13 · 16 13 · 28 4067 4151

Table II
RESOURCE RECORDS AND DNS RESPONSE SIZES.

get domain. The attacker utilises the existing path MTU
discovery procedure in a malicious way, by sending ICMP
destination unreachable fragmentation needed packets to the
name server with a spoofed source IP address. The idea of
spoofing ICMP fragmentation needed packets is not new and
was used as an attack vector for denial of service attacks,
[33]–[35]. We suggest to apply ICMP fragmentation needed
packets to enforce fragmentation. Note that such behaviour
of host fragmentation is recommended, e.g., [17]. However,
the ICMP fragmentation needed packets may be filtered by
firewalls, therefore this technique will not always work.

We tested the PMTU reduction by sending spoofed frag-
mentation needed packets to a name server running on a
linux OS, and successfully enforced fragmentation on DNS
responses. We could force the name server to fragment
responses to fragments of 500 bytes. This technique did not
always work (well) when attempting to fragment to smaller
sizes than 500 bytes.

B. Fragments Reassembly Conditions

In this section we review the basics of the fragment
reassembly process. We then perform a study of the name
servers IP-ID allocation methods, which is required for our
attacks on DNS resolvers.

Let x be the payload in the original IP packet (contain-
ing a DNS response) sent by the name server, then after
fragmentation, it is sent as two IP packets y1, y2, such
that their respective lengths are smaller than x. On inputs
< y1, y2 >, the defragmentation process, running at the
resolver2 reproduces x, by reassembling y1 and y2, and
passes it to the transport layer.

To overwrite the second fragment, the attacker sends a
fake second fragment y′2 so that it arrives at the defragmen-
tation module before the authentic fragments y1, y2 of the
DNS response3. The defragmentation mechanism at the IP

2Alternatively, defragmentation may happen at an intermediate device
such as a firewall or a network address translator (NAT); this does not
impact the attack.

3Note that it is easy to adjust this technique to the (less common) case
where fragments are sent in a reverse order: attacker removes the authentic
second fragment y2 from the reassembly buffer by sending an arbitrary y′1
(whose validation fields match those of the y2), and the rest is the identical
to the description above.

layer caches y′2, in anticipation of the rest of the packet4.
To ensure that the spoofed second fragment is matched

with the authentic first fragment the attacker must predict
certain fields in the IP header.

1) Matching IP Header Fields: According to [24], [25]
the fragments of a datagram are associated with each other
by four parameters in the IP header: (1) the transport layer
protocol number, (2) the value in their IP-ID field, and (3-4)
by the source/destination IP address pair. Thus both the first
authentic fragment y1 and the second spoofed fragment y′2
must have the same destination IP address (of the resolver
that sent the query), the same source IP address (of the
responding DNS server), the same protocol field (UDP) and
the same fragment identifier (IP-ID). In addition, the spoofed
second fragment should have the correct offset (as in the
authentic second fragment); but the second spoofed fragment
is not required to be of the same length as the authentic
second fragment. The fragment reassembly process, applied
to the pair < y1, y

′
2 >, either returns a failure or a different

packet x′ 6= x. Matching most of these parameters is easy,
as they can be anticipated by the attacker.

Maximal Transmission Unit: Path MTU changes infre-
quently, and can be found by the attacker easily, e.g., via
trace-route; thus the attacker can compute the offset in the
spoofed fragment correctly.

IP Addresses: In many scenarios, the resolver has a
single, known IP address. Zones have 6 IP addresses on
average and typically up to 13 IP addresses5.

Internet Protocol Identifier (IP-ID): It remains to en-
sure a match between the value of the fragment identifier
(IP-ID) field in the fake fragment y′2, and the IP-ID in the au-
thentic fragment y1 of the original response x. Specifically,
the attacker has to craft a fragment containing the same IP-
ID value as the one that was assigned by the DNS server to
its DNS response to the resolver. The success probability of
the attacker, as well as the strategy that the attacker applies,
depend on the following factors:

1) the version of the IP protocol (IPv4 or IPv6).

4By default, an unmatched fragment is kept in the cache for 30 seconds
or so, hence, ‘planting’ such fake fragments is easy, e.g., the attacker can
send it even before triggering the DNS request.

5The restriction to 13 IP addresses predates back to the pre-EDNS, [26],
period, where the DNS responses had to fit in a 512 byte UDP datagram.

2) the size of the fragment reassembly buffer at the
receiver (i.e., resolver or NAT/FW behind which the
resolver is located).

3) the IP-ID assignment algorithm implemented by OS
of the DNS server to allocate the IP-ID to outbound
packets.

IP VERSION. In the most common scenario the commu-
nication is over IPv4, where the IP-ID field is 16 bits, for
communication over IPv6, the IP-ID field in IPv6 is 32 bits
long. In this work we focus on IPv4 since support of IPv6
by DNS servers is limited.

REASSEMBLY BUFFER SIZE. The host performing the de-
fragmentation process, i.e., the resolver or firewall, allocates
a reassembly cache for fragments per particular <source IP,
destination IP, protocol> combination. The reassembly cache
is typically limited to n fragments, and when more than n
fragments for the same tuple arrive, the oldest fragments are
evicted from cache and replaced with the new ones.

In linux, this limit n on the number of cached fragments
per source, destination and protocol tuple is imposed by the
ipfrag_max_dist parameter, and is 64 by default; see [27].
Legacy kernel versions of Linux OS allow buffering of up
to few thousands of fragments; assuming a cache size of
256KB, and assuming that the attacker sends minimal size
fragments, e.g., 21 bytes in IPv4 or 49 in IPv6, then the
attacker can send up to 12, 400 fragments in IPv4 or 5300
in IPv6. In Windows the default value of n is 100 fragments.
The limitation on the fragment reassembly buffer does not
exist in IPv6.

IP-ID ASSIGNMENT METHODS. The efficiency of our
attacks depends on the ability to predict the IP-ID value
assigned by the name server to the DNS responses.

We carried out a study6 of the IP-ID allocation methods
implemented by the name servers authoritative for the top
level domains (TLDs), i.e., a total of 271 TLDs7. The
total number of DNS servers, authoritative for TLDs, is
comprised of 1545 name servers, which constitutes 1139
distinct IP addresses (since some name servers, 407 to be
precise, serve more than one domain). Figure 3 summarises
our findings8 related to the IP-ID allocation algorithms
supported by servers authoritative for TLDs: 0.51% servers
could not be reached, 8.99% of the name servers assign
a constant zero IP-ID value9 in the IP header of DNS
responses; 56.63% of the servers assign per-destination

6During this study we sent 50 requests to each name server with a 500
milliseconds delay between each request; we added the delay since some
name servers would return server failure response when more than 10
packets were sent without any delay, and we found he 500 millisecond
delay to be sufficient to receive the required responses.

7We also performed a similar study of IP-ID allocation algorithms
according to 106 Alexa, [28], domains and obtained a similar distribution.

8It is important to emphasise that our study was conducted from within
the network of our university, and findings may vary when performed from
a different network, e.g., due to anycast routing supported by DNS servers.

9The zero IP-ID is assigned to DNS responses that do not get fragmented.

incrementing IP-ID; 13.85% of the servers assign globally
incrementing IP-ID, and 0.26% use some other allocation
(under ‘other’ allocation we include (a seemingly) random
IP-ID assignment); 19.74% support a ‘mixed’ IP-ID alloca-
tion. The ‘mixed‘ allocation is an indication of name servers
that support load balancing, [29]. When using DNS server-
side load balancing, several physical machines are located
behind the same IP address, and each physical machine may
be implementing a different IP-ID allocation mechanism at
the IP layer. We extend more on this in Sections II-B4 and
II-B3.

MATCHING THE IP-ID. If there is no restriction on the
size of the recipient’s fragment reassembly cache, then the
attacker can simply send fragments covering all the IP-ID
range and one will always match. Assuming communication
is over IPv4, i.e., the IP-ID field is 16 bits, the distribution
of all IP-ID values is of size 216 = 65536; namely, in the
worst case the attacker has to craft 65536 fragments, and to
trigger a single query at the resolver, to almost certainly
match the IP-ID in the DNS response. We perform all
our attacks in a restricted setting where the caching DNS
resolver is running on a Linux OS, and n = 64 fragments,
i.e., the ipfrag_max_dist is initiated with the default value
of 64; a better success probability can be achieved if such
a restriction is not imposed.

We next report on our findings of IP-ID allocation meth-
ods by the name servers of TLDs. We discuss the four cases
of IP-ID assignment: random, per-destination, global and
mixed, suggest strategies which the attackers can employ to
predict the IP-ID values assigned by each of the methods
and analyse the efficiency and the success probability.

Zero Per-destination Global Other Non-responsive Mixed
0

100

200

300

400

500

600

700

800

900

1000

Figure 3. The IP-ID allocation methods among the DNS servers authoritative for
(271) Top Level Domains (TLDs).

In Figure 4 we illustrate our results of IP-ID hitting rate
for two domains: 404.gov implementing a per-destination
IP-ID allocation and ssa.gov implementing a global IP-
ID allocation (with average query rate of 100 per second).
During the evaluation we sent a query to (each) name server
every 5 milliseconds, and repeated the attacks 20 times.

2) Unpredictable IP-ID Allocation: Assuming that the
attacker has no prior knowledge on the process according to
which the IP-ID is incremented, and assuming that the IP-ID
values in the authentic packet and in the spoofed fragment

Figure 4. IP-ID hitting success rate for two domains each implementing a different
IP-ID allocation method.

are selected independently, it suffices for the attacker to send
64 spoofed second fragments (assuming a restriction on the
fragments reassembly buffer exists), to ensure success prob-
ability of roughly 1/1024 of replacing the second fragment
of a packet in a single attempt. After a 1024 attempts, i.e.,
repeated attacks, on average, the attacker can hit the correct
IP-ID with a probability that is close to 1.

Under this category we classify four name servers, among
the servers of TLDs, that support (what seems to be) an
unpredictable IP-ID allocation.

However, most systems select the IP-ID sequentially.
Of these, many use a single counter for all destinations
(globally-sequential), as in Windows and by default in
FreeBSD. Other systems, e.g., Linux, use per-destination
IP-ID counters, where the first IP-ID to some destination
is selected at random, and subsequent packets are assigned
sequentially incrementing IP-ID values. In both of these
cases, as we next show, the attacker can efficiently predict
the IP-ID, achieving a significantly higher probability of
success (compared to 1/1024).

3) Per-Destination Incrementing IP-ID Allocation: In a
per-destination IP-ID allocation the first IP-ID to some
destination is selected at random and subsequent packets
are allocated sequentially increasing IP-ID values. The DNS
server maintains the counter mapping to the destination IP
for some period of time, typically more than 30 seconds,
e.g., see distribution of counter storage period that servers
(authoritative for TLDs) maintain to their destinations, in
Figure 5 (this is relevant only to servers supporting per-
destination allocation).

In constrast to random IP-ID allocation, sequentially in-
crementing IP-ID assignment allows to implement a much
more efficient attack. The idea is to narrow down the search
space thus reducing the number of queries that the resolver
is required to issue. We next describe the algorithm of the
attacker. Assuming that the fragment reassembly buffer at
the resolver is limited to n fragments, and n = 64 for
the same source/destination and protocol tuple, the attacker
should plant n − 2 spoofed second fragments in the re-
cipient’s buffer, and should leave space for two authentic
fragmens; this is required since otheriwse attacker’s least
recently arrived fragments will be evicted from the cache,

when two authentic fragments enter the reassembly cache.
Each ith fragment, out of n−2 sent by the attacker, contains{

i · 2
|IP−ID|

(n− 2)

}(n−2)−1

i=0
=

{
i · 2

16

62

}61

i=0
= {i · 1057}61i=0

(where |IP−ID| is the size of the distribution containing all
possible IP-ID values). The puppet then issues 1057 DNS
requests10 for records that result in fragmented responses.
With probability 1, one of the first fragments, sent in
response to DNS requests, will be reconstructed with the
second spoofed fragment of the attacker, that waits in the
reassembly buffer; this is since the IP-ID values in the DNS
responses sent to the resolver overlap the IP-ID values in
one of the 1057 traps set by the attacker.

5 6 14 21 24 72 100 157 207 218
0

10

20

30

40

50

60

70

80

Figure 5. The time intervals that the name servers, implementing per-destination
IP-ID allocation, maintain the mapping to some IP address; we mark the highest time
with 75 minutes, however, large timeout intervals were observed. The x lane denotes
the number of name servers, and the y denotes the period of time the counter was
maintained by the server.

4) Globally Incrementing IP-ID Allocation: A globally-
incrementing IP-ID appears to be widely used, and in this
case the attacker can simply learn the current value, and the
propagation rate11, by querying the name server directly. The
method of exploiting the IP-ID advancement to measure the
transmission rate of systems is not new, and was used in
[31].

5) Mixed Incrementing IP-ID Allocation: As we men-
tioned earlier, some of the servers, authoritative for TLDs,
use load balancing (305 out of 1139 to be precise) and
more than one physical machine may be allocated the same
IP address. For instance, the name server a0.pro.afilias-
nst.info (IP 199.182.0.1) authoritative for pro TLD, appears
to be using more than 4 physical machines, as we were able
to identify four sequentially incrementing IP-ID allocations
(i.e., four ranges which are incremented by units of 1), and
one random. Figure 6 summarises the distribution of servers
(authoritative for TLDs) which support load balancing, and
each physical machine uses a different counter to the des-
tination IP. Note that the number of instances of machines

10To cincumvent the caching of the resolver the puppet should issue re-
quests for records that result in non-existing domain responses (RCODE=3)
or NODATA responses.

11The query rate to name servers is known to be stable, [30].

behind a load balancer is dynamic, and some machines may
go offline and new ones may emerge; furthermore, it may
be the case that our requests did not reach some of the
machine instances due to the way requests are rerouted to
different machines. Therefore, the study in Figure 6 is meant
to provide a general idea of the load balancing implemented
by name servers.

1 2 3 4 5 6 7 8 9
0

5

10

15

20

25

30

35

40

2 3 4 5 6 7 8
0

20

40

60

80

100

120

140

Figure 6. The distribution of the number of physical machines behind a single
IP address; this holds for 305 name servers authoritative for TLDs, that support load
balancing. The x corresponds to the number of name servers and the y to the number
of counters detected behind an IP address.

We next show the impact of load balancing on the success
probability of the attacker to hit the correct IP-ID. Let k
be the number of different physical servers, such that each
uses a different counter to the destination IP. In this case, the
attacker can follow either of the following two strategies: (1)
divide the fragment reassembly buffer into k logical buffers
each of size (n−2)/k fragments (where n is the actual size
of the fragment reassembly buffer), or (2) issue additional
O(k) queries, in the worst case, in order to ensure that the
load balancer relays the DNS request to the machine with
the required IP-ID counter value; typically the name servers
respond in a round-robin sequence, so on average, after k
queries, the required name server will return the response.

In our attacks we focused on name servers that maintained
a single counter to some destination. Specifically, by apply-
ing the technique in Section III-A, we forced, i.e., ‘pinned’,
the resolver to query the name servers that did not implement
load balancing.

C. Circumventing the Cache

To evade caching of the resolver the attacker can issue
DNS requests for ‘non-existing domain names’ (NXD),
i.e., responses containing an RCODE with name error, or
responses indicating that the domain name exists but with a
different type, i.e., with ‘no data no error’ responses. Such
responses exist in every domain. We found that domains that
use NSEC3 (which is currently the majority of the domains)
to indicate NXD (and NODATA) responses, to be most
suitable for our attacks as those responses get fragmented.
This technique is similar to Kaminsky attack, as it allows
the attacker to repeat the attack as frequently as required,
by selecting a different random name (prepended to the real
domain name) in each query.

D. Fragment Reassembly Spoofing: Applications

The IP-ID is the only ‘unknown’ which the attacker has
to predict, and once succeeded, the attacker can impact
the fragment reassembly process. In particular, fragment
reassembly spoofing yields incorrect DNS responses, which
can either result in a timeout at the resolver, and then
subsequent retransmissions to the same resource record
(which can also be ruined), or, when correctly formatted,
those DNS responses can deliver spoofed resource records,
which the resolver is bound to cache and return to benign
clients. In Sections IV and III, we show how to apply
and exploit fragment reassembly spoofing for disturbing
attacks on availability and integrity of the DNS service;
we also present an experimental evaluation of the attacks,
that we performed, on BIND 9.8.3 and Unbound 1.4.17,
running against real name servers authoritative for TLDs,
e.g., org, mil. The vulnerabilities that allow our attacks are
summarised in Table I.

III. NAME SERVER PINNING

In this section we introduce a new attack: the name server
(NS) pinning. NS pinning forces resolver to query a specific
name server of attacker’s choice. We propose two different
techniques to perform NS pinning: (1) in Section III-A we
apply name server blocking, and (2) in Section III-B we
show how DNS poisoning can be used for NS pinning. The
NS pinning is effective even if DNSSEC is correctly and
fully deployed, since the glue records are not signed, [1].

In Section III-C we show that NS pinning can be applied
as attack vector allowing a range of more complex attacks.

A. NS Pinning via NS Blocking

We showed that off-path attackers can intervene in
the communication between the DNS resolvers and name
servers by spoofing the fragment reassembly process. How-
ever, by merely injecting a spoofed second fragment, that
gets reassembled with the authentic first fragment, the at-
tacker does not gain much: the reassembled DNS response
will most certainly be discarded by the resolver, e.g., due
to incorrect UDP checksum. Also note that the reassembled
DNS response is initially sent in response to a request which
the attacker itself triggered. The attacker can apply this
technique to inflict denial of service on the responses to
legitimate clients. However, this requires a lot of effort on
behalf of the attacker - in particular the attacker has to time
its spoofed fragments with the queries of legitimate clients.

In this section we propose to utilise fragment reassembly
spoofing to block DNS responses in a way that allows
to dissuade DNS resolvers from querying particular name
server(s), resulting in NS blocking. We then show how
to apply NS blocking to perform NS pinning, i.e., force
the resolvers to query name servers of attacker’s choice.
The NS pinning based on DNS blocking is applicable to
DNS resolvers that follow a behaviour recommended in

RFC 4697 [12] and [13]. The recommendation suggests
that resolvers should avoid querying non-responsive name
servers, if there are two or more failed responses within
some time interval (the time interval depends on the resolver
implementation).

1) Response Blocking: To block responses to a query
from a particular name server to the resolver, the off-path
attacker needs to send an arbitrary fake second fragment y′2
with the anticipated IP-ID and other parameters, to match
a legitimate response, as described above; for efficiency
the attacker should generate small fragments, e.g., one
byte long (plus the headers). The reassembly process using
the legitimate first fragment and the fake second fragment
usually fails, and both fragments are silently dropped due to
incorrect checksum at the UDP layer or by the DNS resolver
itself.

2) NS Blocking: The resolver will resend the query after a
timeout, but the timeout periods are known to the attacker,
who can easily send appropriate fake fragments to cause
loss of each of the responses, until the resolver gives up.
After few12 successful DNS response blocking attempts the
resolver marks the name server as non-responsive and does
not send further DNS requests to it for the duration of the
time interval; The time interval is set to 15 minutes in
Unbound. Note that the attacker is not required to block
consecutive responses, and blocking any two responses
(from the same IP) within a time interval suffices for the
resolver to block that name server. A similar behaviour of
avoiding non-responsive name servers was observed by [13]
in PowerDNS and WindowsDNS.

It is important to notice, that with most resolvers, NS
pinnning is effective against a specific name server IP, and
not limited to a specific domain. Namely, when a name
server serves several domains, by blocking DNS responses
to one domain that it serves we block its IP address in
general, for all the domains that it serves. For instance,
name server at IP 38.103.2.1 serves paypal.com as well
as isi-sns.info. By blocking responses to isi-sns.info the
attacker blocks the name server and dissuades the resolver
from querying it also for paypal.com. Since name servers
often host multiple domains, DNS response blocking is very
effective. According to the study that we performed, 71.53%
of the name servers hosting 10, 000 top Alexa domains, and
26.28% of the name servers of TLDs, serve more than one
domain.

3) NS Pinning: To force the DNS resolver to query a
specific name server the attacker can repeat DNS response
blocking for all the name servers, except one, which the
attacker wishes the resolver to use.

The NS pinning via NS blocking is very useful and
effective: (1) part of the zones, served by some name

12The exact number of the attempts is resolver dependent, e.g., it is set
to two attempts within a time interval for Unbound.

server, may support DNSSEC while others not. Support of
DNSSEC typically implies fragmented DNS responses. Thus
the attacker can exploit fragmented responses from one zone
to block the name server for another zone whose responses
are not fragmented; (2) attacker can create a new zone (with
large responses) and choose to be served by same name
servers as some victim domain whose responses are not
fragmented (this is typically possible for second - and lower
- level domains); (3) popular domains, e.g., paypal.com,
may share name servers with much less frequently queried
domains, e.g., info. This allows to block popular domains
that are frequently queried, by launching DNS blocking
against much less popular domains that are infrequently
queried and match the IP-ID with little or no effort; (4) some
name servers may be using load balancing, thus increasing
the number of IP-ID counters. However, typically not all
name servers of same domain use load balancing. Therefore,
by blocking the name servers that use load balancing, the
attacker improves the efficiency of the attack.

4) Experimental Evaluation: The NS pinning attack,
against an Unbound 1.4.17 resolver using (fragmented)
responses from 404.gov domain, is illustrated in Figure 7.
In steps 1 and 2 the puppet coordinates with the attacker
and issues a DNS request for $123.404.gov (where $123
is a random prefix). In steps 3 and 4, the off-path spoofing
attacker (at IP 6.6.6.6) sends a forged second fragment, for
all the possible name servers (i.e., a total of 2 spoofed frag-
ments) except one which the attacker wants the resolver to
use for its queries during the poisoning phase; the 404.gov
domain has three name servers. This ensures that only one
IP address will result in a valid response, and the other two
result in a malformed DNS packets. The spoofed second
fragment is incorrect, and contains a single arbitrary byte (in
addition to headers). In step 5, the spoofed second fragment
is reconstructed with the authentic first fragment resulting
in a malformed DNS packet which leaves the fragments
reassembly buffer. This malformed DNS response is then
discarded by the resolver, and the IP of the name server is
marked13 as ‘non-responsive’. When the authentic second
fragment arrives, it does not have a match and is discarded
after a timeout. As a result the resolver does not receive
the response, and after a timeout it resends the DNS request
to the next DNS server, step 6. The same procedure applies
here, and the response is discarded. In step 9 a valid response
arrives from IP 162.138.183.11. This way, by blocking the
responses from all name servers except one, we forced the
resolver to direct all its queries for 404.gov domain to
162.138.183.11.

The Wireshark capture, in Figure 8, that was run on
the resolver, demonstrates the experimental evalutation, i.e.,
the DNS packets entering/leaving the network card of the

13In reality the resolver marks the server as ‘non-responsive’ after two
unsuccessful responses; this is handled by sending two spoofed fragments
with consecutive IP-ID in IP headers.

SrcIP:162.138.191.11 dstIP:1.2.3.4
IP-ID: 777 Offset:0

SrcIP: 162.138.191.11 dstIP:1.2.3.4
IP-ID: 777 Offset: 1480

2

Spoofer
6.6.6.6

Spoofer
6.6.6.6

Recursive
DNS resolver

1.2.3.4

Recursive
DNS resolver

1.2.3.4

Puppet
1.2.3.6

Puppet
1.2.3.6

A?$123.404.GOV
1

Attack initiated

3

SrcIP:162.138.191.11 dstIP:1.2.3.4
IP-ID: 777 Offset:1480

Does not have a match
thus can not be reassembled.

Discarded after
30 seconds

Reassembled with
attacker's fragment

(sent in step 3).

5

Name Server
falcon.sec.GOV
162.138.191.11

Name Server
falcon.sec.GOV
162.138.191.11

Name Server
puffin.sec.GOV
162.138.191.23

Name Server
puffin.sec.GOV
162.138.191.23

SrcIP:162.138.191.23 dstIP:1.2.3.4
IP-ID: 888 Offset:0

SrcIP: 162.138.191.23 dstIP:1.2.3.4
IP-ID: 888 Offset: 1480

4

SrcIP:162.138.191.23 dstIP:1.2.3.4
IP-ID: 888 Offset:1480

7

A?$123.404.GOV

A?$123.404.GOV

Name Server
crow.sec.GOV
162.138.183.11

Name Server
crow.sec.GOV
162.138.183.11

6

Malformed DNS
response discarded by

resolver. Server marked as
non-responsive. Query resent

to next server.

Reassembled with
attacker's fragment

(sent in step 4).

A?$123.404.GOV
8

9

SrcIP:162.138.183.11 dstIP:1.2.3.4
IP-ID: 555 Offset:0

SrcIP:162.138.183.11 dstIP:1.2.3.4
IP-ID: 555 Offset:1480

Malformed DNS response
discarded by resolver. Server

marked as non-responsive .
Query resent to next server.

Response correct. During
next15 minutes queries are

sent to that server.

Does not have a match
thus can not be reassembled.

Discarded after
30 seconds

Does not have a match
thus can not be reassembled.

Discarded after
30 seconds

Figure 7. NS pinning via name server blocking attacks.

resolver. During the course of the experiment the puppet
issued 6000 queries14 to the resolver. The spoofer initiates
the attack by sending three spoofed fragments to each IP
address except 162.138.183.11. For simplicity, the capture
presents only the packets exchanged between the resolver
and the name server of 404.gov at 162.138.191.23 (by
adjusting a corresponding filter in wireshark); the complete
capture contains queries/responses from other name servers
too. Packets numbered 18-20 are the forged fragments sent
by the spoofer, with sequentially incrementing IP-IDs. Then
puppet triggers a DNS request, packet 29. The response from
the name server contains two fragments, packets 33 and 34.
The first fragment is reassembled with spoofed fragment 18,
resulting in a malformed packet which is discarded by the
resolver.

The second fragment is discarded after a timeout. In
packet 48 the resolver requests a public verification key of
the 404.gov zone. The response contains three fragments 49-
51; the first fragment is reconstructed with the spoofed frag-
ment in packet 20, which also results in a malformed DNS
response and is discarded. Note that this request, in packet
48, was sent at 19:28. Based on our tests it can be seen that
when Unbound encounters a timeout twice for the same des-
tination IP, it stops sending further packets to that destination
for 15 minutes. Indeed, the next packet that is sent to that
IP is packet number 6848, at time 19:43. The same scenario
was observed with IP 162.138.191.11. The queries between
19:28 and 19:43 were sent only to 162.138.183.11, avoiding
162.138.191.11 and 162.183.191.23. Note that even if some
of the responses (between packets 33 and 49) were valid

14Note that our goal was to test the behaviour of the resolver, and to
check the frequency of the queries to non-responsive servers; in real attack,
once the IP-ID is known it is sufficient to issue two queries to mark the
server as non-responsive.

and accepted by resolver, e.g., if they were not fragmented,
it did not make a difference, and two timed-out responses
in a 15 minute interval were sufficient for Unbound to
stop querying those IP addresses; this fact shows that the
success probability of the attack does not depend on the
IP-ID selection mechanism.

B. NS Pinning via Cache Poisoning
NS pinning can also be achieved via DNS cache poison-

ing. In this section we assume that the attacker can launch
a DNS cache poisoning attack against a specific resolver.
We report our findings on what we believe to be a DNS
vulnerability, and show how to apply DNS cache poisoning
to launch NS ponning attack.

When launching DNS cache poisoning against some do-
main a.tld, the attacker should set the time-to-live (TTL)
on the NS (resp A) record, e.g., ns-malicious.a.tld, that it
injects, to some high value. The resolver caches the record
for a period that is a minimum between the TTL (on the
record itself) and its own maximal caching time parameter.
Note that it is reasonable to assume that there are other
(legitimate) NS records for that victim domain that are
already cached at the resolver; in fact since cache poisoning
attacks are against popular domains, e.g., com, its name
servers are typically cached at the resolver. Note though,
that since the TTL on the spoofed record is higher than the
TTL on the legitimate cached records, after the legitimate
records expire from cache, the resolver will use only the
remaining spoofed NS record.

During our experimental evaluation we noticed that for as
long as the spoofed record ns-malicious.a.tld (authoritative
for a.tld) is in the cache, the resolver will not request
other NS records for a.tld and will only use that (spoofed)
record. The problem is that even if that spoofed NS (resp
A) record is non-existent or DNSSEC validation fails and as

Figure 8. The wireshark capture of the attack, presenting only the packets exchanged between the name server 162.183.191.23 and the resolver. As can be observed, after two
malformed responses the resolver refrains from sending further queries to that name server for 15 minutes. Fragmented packets are coloured in white, DNS requests in black,
and reassembled DNS fragments in blue.

a result the requests of the resolver to that domain timeout,
the resolver will not attempt to fetch the other records
for that domain, but will contiue using that NS (resp A)
record. Our NS pinning va cache poisoning relies on the
fact that the delegation (glue) records, NS (name server) and
A (IP address), located in authority and additional
sections, are not signed, [1]. This allows the attacker to
change the IP address (in the additional section) of the
name server of some victim domain, to its own address, or
to add a new name server (in authority section) for the
victim domain. Such NS and A records are usually cached
and used, for queries to the specified domain; see [36]. At
this point, the attacker managed to cause queries for the
victim subdomain to be sent to a machine controlled by the
attacker.

After spoofing the glue records and injecting an NS
record, the attacker will not be able to craft valid signa-
tures. Strictly validating resolvers reject the responses with
incorrect or missing signatures, resulting in timeouts for all
requests to that domain. Note that the resolver does not
attempt to check if there are other name servers for that
domain. As a result the resolver is locked in a ‘cache-or-
crash’ state, where it can either cache the spoofed records
coming from the malicious name server, or constantly time-
out, i.e., crash. Resolvers not performing strict validation,
e.g., supporting permissive mode such as Unbound, cache
the spoofed responses, while resolvers performing strict
validation, e.g., Bind 9.8 timeouts upon subsequent requests.
The result is a cache poisoning attack or an effective denial
of service amplification attack.

This vulnerability, of redirecting DNSSEC enabled DNS
requests to malicious server by a man-in-the-middle (since
the delegation records are not signed), was pointed out by
Bernstein [14], yet without a specific application for such an
exploit. Bau and Mitchell, [4], refute Bernstein’s claim of
this being a vulnerability, by proving that it does not enable
a man-in-the-middle attacker any additional capabilities, and
conclude that it does not pose a significant threat. However,
not signing the glue records exposes to NS pinning (leading
to a range of other attacks), and to subdomain injection
(Section IV).

C. NS-Pinning: Applications

NS-Pinning is rarely a goal by itself; more often, it can
serve as a mechanism for other goals. We discuss three such
goals: facilitation of DNS poisoning; degradation of service,
and traffic analysis.

Facilitate DNS poisoning: In [11], Ramasubramanian
and Sirer conducted a survey showing that a typical domain
name depends on 46 servers on average, and names belong-
ing to countries depend on a few hundred servers. They note
that compromising a server can lead to domain hijacks and
postulate that it is possible to hijack 30% of the domains in
Yahoo and DMOZ.org directories; DNS servers are known to
have vulnerabilities [37], [38]. However, [11] did not suggest
a technique which can be used to force a resolver to query
a specific name server. NS-pinning can provide exactly the
necessary mechanism.

Also note that NS-pinning can assist in other DNS cache
poisoning attacks, including these in the next section of this
paper, as it allows the attacker to reduce the number of
servers that the resolver can query, possibly to only one.
As a result the attacker forces resolver to query name server
of attacker’s choice.

Off-path Degradation of Service: By blocking ‘good’
name servers, an attacker can cause resolvers to send their
traffic to specific, ‘bad’ name servers. In particular, resolvers
may resort to name servers with very high latency, causing
unnecessary delays. Note that the zone administrators often
deploy techniques to distribute the load between several
physical servers sharing the same IP, e.g., using load bal-
ancing or Anycast [39]. Typically not all the name servers
of a domain deploy such optimisations, e.g., 6 out of 13 root
servers, [40]. Our technique allows the attacker to block
those servers and to ‘force’ the resolver to query a name
server which does not support such load balancing.

Off-path Cache or Crash Attacks: Configuration errors
are common in DNS and DNSSEC, e.g., [41]. In particular,
often there is a lack of coordination between the name
servers serving some domain. The attacker can dussade
the resolver from contacting correct name servers, and can
instead force it to query bad name servers. For instance,
consider a resolver that can establish a chain of trust to

the target zone (that supports DNSSEC). Assume that one
name server in the target domain does not return updated
signatures/keys, while all others do. If the resolver performs
a strict validation of DNSSEC, e.g., Bind 9.8.3, and does
not accept responses that do not validate, e.g., due to
missing signatures, it will continuesly timeout, i.e., ‘crash’.
In contrast, consider a resolver that supports permissive
mode, e.g., Unbound 1.4.17; in this case, the resolver will
cache the wrong responses and return them to clients. We
coin this the ‘cach or crash attack’.

Off-path Traffic Analysis and Covert Channel: Many
names servers provide side-channels allowing an attacker to
learn or estimate the rate of requests handled by the server. In
particular, one simple and effective side-channel is the IP-ID
used by the name server. This mechanism also allows off-
path covert channel, between an agent, say a bot b, which
can use the resolver r, and an off-path attacker o, which
can make queries to the name server ns.foo.bar. The bot
can, e.g., encode information by signaling via the queries
to ns.foo.bar (or possibly, signaling using distinct queries
to several domains, each mapped to a specific, distinct
name server). The attacker can communicate to the bot by
signaling via loss of DNS responses.

IV. DNS CACHE POISONING

In this section we show how to employ fragment re-
assembly spoofing for modification of DNS responses by
off-path attackers, in a way that pollutes the cache of DNS
resolvers with spoofed A and/or NS records. This results in
efficient and practical cache poisoning attacks on recursive
DNS resolvers; our attacks allow domain hijacking (by
injecting spoofed NS or/and A records for real domain),
and subdomain injection (by injecting spoofed NS record
for a non-existing domain). In Table III we report on the
vulnerabilities, which we tested on two DNS resolver soft-
ware that support DNSSEC: Bind 9.8.3 and Unbound 1.4.17;
these vulnerabilities are related to: (1) the caching policies
which the resolvers apply on records in DNS responses,
(2) the DNSSEC validation which the resolver performs
on DNSSE-enabled DNS responses, and (3) server selection
algorithms. The attack begins in the same way as other cache
poisoning attacks, whereby the attacker triggers a DNS re-
quest to some victim domain, e.g., using a puppet (malicious
script confined in a browser). The off-path attacker also
sends a spoofed second fragment (or a set thereof if the IP-
ID is not known), as described in Section II. Assuming that
the validation parameters (source/destination IP, protocol,
IP-ID, offset) in the spoofed second fragment are correct,
when the first authentic fragment arrives at the fragment
reassembly buffer it is reassembled with the spoofed second
fragment (that is already waiting in the reassembly cache).
The complete packet is then passed to the upper TCP/IP
layers.

In Section IV-A we describe the validation that the
DNS resolvers apply on the DNS responses, and explain
the conditions that must hold so that records in a DNS
response get accepted and cached by the DNS resolver.
The DNS cache poisoning on plain DNS responses is easy
when the response is fragmented; this requires that the
resolver supports EDNS (which allows responses over 512
bytes). Since DNSSEC is supposed to foil cache poisoning
attacks we review DNSSEC, Section IV-B. We report on our
findings pertaining to DNSSEC deployment vulnerabilities
and outline few exploits thereof leading to effective and
efficient cache poisoning attacks. We then present the cache
poisoning attacks, Section IV-D, that we carried out against
Bind 9.8.3 and Undound 1.4.17 resolvers poisoning entries
for several popular DNSSE-enabled domains. We also vali-
date the subdomain injection attack (Section IV-D2) against
DNSSEC NSEC3 opt/out zones of [4], yet we carry out
our attack by off-path attacker, as opposed ot a man-in-the-
middle attacker used by [4].

A. Crafting a Valid DNS Response

When the DNS response arrives at the application layer of
the DNS resolver the resolver validates its UDP checksum
and then applies caching policies on the response to decide
if to cache the records that it contains. We next elaborate on
each of these checks.

1) Validating UDP Checksum of DNS Response: Match-
ing the checksum is straightforward. The UDP checksum
is simply a one’s complement sum is performed on all the
16-bit values (of the payload) then the one’s complement is
taken of that value to populate the checksum field. Therefore,
to match the checksum the attacker can query the name
server in advance for the same resource record and learn
the contents of the corresponding DNS response, including
all contents in the second fragment. Then the attacker has
to ensure that the checksum of the forged fragment y′2 is
identical to the checksum of the authentic second fragment
y2, e.g., by concatenating two bytes after the EDNS record
that ‘fix’ the checksum, or by changing two resource records:
one to create the forged record, and another to fix the
checksum.

2) DNS Records Caching Policies: To decide whether to
cache the response the resolver applies its caching policies
on the records inside the DNS responses. When constructing
a spoofed second fragment and injecting spoofed DNS
records, we essentially follow the known rules for injection
of spoofed records into the DNS cache that were investigated
and studied (most notably) by Kaminsky [42] and Son and
Shmatikov [36], and by Bau and Mitchell [4] for DNSSEC
enabled DNS responses.

We identified vulnerabilities pertaining to caching policies
applied to records in DNS responses of type: non-existing
domain (NXD, RCODE 3) and no data (NODATA, no error),

Resolver Vulnerability
Resolver Response Permissive DNSSEC Domain NS
Software w/SOA Mode Stripped Insecure Pinning
Bind × × × × ×
(9.8.3)
Unbound

√ √ √ √ √

(1.4.17)

Table III
DNS RESOLVER VULNERABILITIES, PERTAINING TO CACHING

POLICIES, DNSSEC PROCESSING POLICIES, AND NAME SERVER
SELECTION.

[43], which contain an SOA records in the authority sec-
tion. We found that Unbound 1.4.17 caches the NS records
that appear in NXD and NODATA type responses while Bind
9.8.3 does not cache the NS records if it detects an SOA
record; we show attacks exploiting this in Section IV-D.
This allows to launch effective and efficient cache poisoning
attacks again Unbound resolver spoofing responses of NXD
type; note that our attacks exploit DNSSE-enabled DNS
responses, since plain NXD or NODATA responses are not
fragmented. This vulnerability is summarised in the first
column in Table III.

If the resolver supports DNSSEC it also applies DNSSEC
validation on DNSSEC-enabled domains. We extend on this
in Section IV-B.

B. Vulnerabilities of Incremental DNSSEC Deployment

RFC 3833 [44] requires DNSSEC to support incremental
deployment, i.e., not to expose to new attacks and not to
harm the Internet functionality. In this work we put this
requirement to test. However, as our results indicate, the
incremental deployment of DNSSEC may further exacerbate
the DNS cache poisoning vulnerabilities15. The incremental
deployment has impact on both the resolvers and the zones.
With respect to resolvers the incremental deployment is
related to running in some ‘test non-validating’ mode for
resolvers, e.g., the permissive mode supported by resolvers,
e.g., Unbound. The incremental deployment for zones means
adopting DNSSEC, yet the resolvers cannot establish a
chain-of-trust to them, since, e.g., the parent zone does not
delegate the signed public-key of the child; these zones are
called ‘islands of security’.

We next extend on the implications of incremental
DNSSEC deployment by zones and DNS resolvers.

1) Islands of Security: Although 30.1% of TLDs, and 2%
out of 300,000 Alexa domains, already support DNSSEC,
the resolvers cannot validate the public-keys of many of
them, e.g., the parent zone does not delegate the signed
public-key of the child while the child supports DNSSEC,
e.g., most children of gov. Specifically an ‘Island of Secu-
rity’ means that not all the zones from the root to the target

15It is known that DNSSEC may also expose to denial of service attacks
due to large DNS responses, but this is not the focus of our work.

zone deploy DNSSEC correctly. In this case the DNSSEC
does not offer any protection, since in this case the DNS
resolvers fall back to non-validating mode. But, worse, it
can even expose to efficient and practical cache poisoning
attacks.

2) Permissive Resolvers: A permissive resolver is one
that supports DNSSEC, however, ignores DNSSEC valida-
tion failures, e.g., if the signatures are missing or invalid.
We found that Unbound 1.4.17 DNS resolver has sev-
eral explicit parameters allowing to turn different ‘permis-
sive’ mode features on16: (1) val-permissive-mode
(when set, the resolver does not return SERVFAIL when
DNSSEC does not validate, e.g., due to incorrect or
missing signatures); (2) domain-insecure (ignores the
chain-of-trust and the domain is treated as insecure);
(3) harden-dnssec-stripped (failing to validate
DNSKEY data for a trust anchor will trigger an insecure
mode for that zone). We generally call of these parameters:
the permissive mode.

Obviously, for such resolvers, DNSSEC does not provide
added security; yet, there appears to be a significant number
of such resolvers [10], [45], apparently due to concerns about
loss of connectivity due to interoperability and other prob-
lems upon enforcing DNSSEC. Such implementors deploy
DNSSEC incorrectly or possibly via an ‘incremental deploy-
ment’, aiming to preserve the DNS functionality with inter-
mediate Internet devices, e.g., firewalls, and legacy resolvers
which may discard DNSSEC enabled DNS responses or strip
DNSSEC signatures. This approach apparently assumes that
permissive use of DNSSEC can provide evidence on whether
the network can deploy DNSSEC fully without problems or
not, while not harming their security; unfortunately, this is
not the case and as we show such resolvers are open to
poisoning.

C. DNSSEC NSEC3 opt/out

The NSEC3 DNSSEC record with opt-out option [46]
allows attackers to create fake (non-existing) sub-domains.
As [4] showed this facilitates XSS, phishing and cookie
stealing attacks. Sub-domain injection attack by a man-in-
the-middle attacker was proposed in [4]; [4], also suggested
that the attack could be carried out by an off-path attacker,
assuming that only the transaction ID in DNS packets is ran-
domised. However, this assumption does not hold for most
DNS resolvers, as they (at the very least) support source port
randomisation. In Section IV-D2 we show that such an attack
can be effectively carried out by an off-path attacker, that
does not intercept and inspect packets, and against patched
DNS resolvers, i.e., supporting source port randomisation,
IP randomisation and DNS query randomisation.

In spite of the publication of this potential abuse by
MitM [4], NSEC3 opt-out is still widely used, and often

16These parameters reside in the configuration file Unbound.conf.

even recommended, since it improves performance (esp. as
long as DNSSEC is deployed only in small fraction of the
domains).

D. DNS Cache Poisoning Attacks: Experimental Evaluation

We next report on our experimental evaluation of the
attacks, against Bind 9.8.3 and Unbound 1.4.17 resolvers,
using responses from real zones. Our attacks allow domain
hijacking (by injecting an NS or an R record), or subdomain
injection (by injecting an NS record for a new subdomain).

1) Domain Hijacking: Domain hijacking can be per-
formed when either the resolver is supporting a permissive
mode, or the target zone is an island of security. In this case,
the attacker can replace the RR(s) in the authentic second
fragment of a DNS response with (spoofed) NS or A RR(s)
pointing at his name server; the TTL in those spoofed RRs
has to match the TTL of the other RRs in the same RRset,
in order for the resolver to accept and cache it.

We tested the domain hijacking attack in two scenarios by
spoofing fragments from: (1) nxdomain/no-data responses
and (2) DNSKEY responses. The ‘nxdomain/no-data’
(NSEC33) response is often fragmented in the authority
section, with NS records (from the authority and A
(and EDNS) records (from the additional) residing in
a second fragment. This allows replacing the authority
records in the second fragment with fake NS RRs (or
additional records with spoofed A records); see Sec-
tion IV-D2.

The ‘existing domain’ response, e.g., for DNSKEY or
TXT request, is also often fragmented. Such responses
typically contain records in the additional section too,
and allow changing the IP of name server with IP of the
attacker; see Section IV-D2.

2) Injecting NS RR to NSEC3 Response: Typically, re-
sponses of type ‘non-existing domain (nxdomain)’ or ‘no
data no error’, in domains that support NSEC3, are of size
between 1700 to 2000 bytes. This allows the attacker to
replace the authentic NSEC3 or RRSIG RR(s) with a NS
RR for a new name server; see Figure 9. If the response
does not contain any other NS RRs then the attacker can set
an arbitrary high TTL to ensure that his RR stays in cache
when the authentic NS RRs for that domain expire. Note that
in this attack, to save space in the paper, we injected two
NS records: one for an existing domain and another for a
new subdomain; we did this to validate subdomain injection
and name server hijacking attacks in one response, see
Figure 10. The record: www.sec.cs.biu.ac.il is a new (non-
existing) subdomain under sec.cs.biu.ac.il and it points
at the name server ams.sec.cs.biu.ac.il controlled by the
attacker. The attacker triggers a DNS request (via a puppet)
and synchronises (steps 1 and 2, Figure 9). Then (step 3)
the attacker sends a spoofed second fragment containing an
NS RR for domain sec.cs.biu.ac.il. This spoofed fragment
is combined with the authentic first fragment (step 3) and

SrcIP:132.70.6.201 dstIP:132.70.6.202 IP-ID: 777
PAYLOAD: . . .

SrcIP:132.70.6.201 dstIP:132.70.6.202 IP-ID:777
PAYLOAD: . . .

Attack initiated

Resolver's Cache

Discarded after
30 seconds

SrcIP: 132.70.6.201 dstIP:132.70.6.202 IP-ID: 777 Offset: 1480
PAYLOAD: . . . sec.cs.biu.ac.il IN NS ams.sec.cs.biu.ac.il

sec.cs.biu.ac.il NS ams.sec.cs.biu.ac.il

ams.sec.cs.biu.ac.il A 6.6.6.6

2

3

4

5

Spoofer
ams.sec.cs.biu.ac.il

132.70.193.19

Spoofer
ams.sec.cs.biu.ac.il

132.70.193.19

Name Server
sec.cs.biu.ac.il
132.70.6.201

Name Server
sec.cs.biu.ac.il
132.70.6.201

Recursive
DNS resolver
132.70.6.202

Recursive
DNS resolver
132.70.6.202

Puppet
132.70.6.148

Puppet
132.70.6.148

A?$1.sec.cs.biu.ac.il
1

A?$1.sec.cs.biu.ac.il

A?ams.sec.cs.biu.ac. i l

ams.sec.cs.biu.ac.i l A 6.6.6.6

6

7

Figure 9. Poisoning an nxdomain (or no data) response, by replacing the
NSEC3 RR with an NS RR.

enters the cache; the authentic second fragment is discarded
after a timeout (step 5). Note that the attacker can provide
any arbitrary NS RR, in particular, one that is not in the same
domain as the victim; in this attack we spoofed the response
with name for a new NS RR, i.e., ams.sec.cs.biu.ac.il,
in our domain, i.e., sec.cs.biu.ac.il, for testing purposes
to observe that the subsequent queries of the resolver to
domain sec.cs.biu.ac.il are sent to ams.sec.cs.biu.ac.il
and responses get cached.

The wireshark capture of the resulting poisoned DNS re-
sponse is in Figure 10. The authentic fragment contains part
of the RRSIG and two complete records, i.e., NSEC3 and a
corresponding RRSIG. The spoofed fragment contained the
authentic part of the RRSIG, spanning the first and second
fragments, and two fake NS records which replaced the
authentic NSEC3 and RRSIG.

Spoofed
RRs

Query with a
random prefix

Figure 10. Poisoning an nxdomain (or no data) response for domain
sec.cs.biu.ac.il, by replacing the NSEC3 RR with an NS RR.

Injecting A RR to DNSKEY Response: In this attack
we spoof the IP for the name server of org domain, in a
DNS response for a DNSKEY of org domain.

The resolver issues a DNS request for the DNSKEY of
org; this is an indirect way to trigger a query, i.e., the re-
solver asks for the DNSKEY of some domain automatically,
when the DNSKEY expires from cache, or when it needs to
validate records for that domain, e.g., to be able to validate
an A record or a non-existing domain (NSEC3) record; an
attacker may also be able to cause a resolver, which does
not support DNSSEC, to issue such a query, by sending an

appropriate request to the resolver. This query type is useful
if the response to an nxdomain query is not fragmented.

The annotated screen caption of the attack is illustrated in
Figure 11. The first line (122) contains the ‘forged second
fragment’; this fragment is kept in the defragmentation cache
of the resolver, waiting for a matching first fragment (i.e.,
with the same set of (source IP=199.249.112.1,
dest IP=132.70.6.202, fragment ID=7c6e,
protocol=UDP)). In the next line (133), the resolver
sends the DNS query to the name server.

Next line (134) is the first fragment of authentic re-
sponse to the query, sent by the name server of org (at
IP 199.249.112.1). This response matches the fake second
fragment already in the defragmentation cache, hence it
appears as a complete DNS response packet. The contents
of this packet are described in the lower panes; in particular,
see the two forged resource records in the additional section,
which contain incorrect (adversarial) IP addresses for two of
the name servers of the org domain.

Finally, notice that the authentic second fragment, re-
ceived in line 135, has no matching first fragment (since the
one received was already reassembled with the spoofed sec-
ond fragment). Hence, it is entered into the defragmentation
cache, where it is likely to remain until discarded (typically,
after maximal lifetime of about 30 seconds).

V. CONCLUSIONS AND DEFENSES

We showed how an off-path attacker can efficiently exploit
fragmented DNS responses to poison DNS caches. Most
DNS responses are short, and hence not fragmented; how-
ever, some DNS responses can be long and may get frage-
mented. Ironically, one reason for such long responses is the
use of DNSSEC; however, we also show how attackers can
cause such fragmentation, e.g., by intentionally registering
domain names with long referral.

We also introduced the NS-pinning attack, whereby an
attacker manipulated the choice of name server to be used
to resolve a particular domain; and we showed NS-pinning
attacks, in particular, exploiting fragmented responses.

The attacks are effective against valid implementation
of the DNS and IP specifications; furthermore, we have
confirmed effectiveness against several domains, using real
network scenarios and common resolvers (Unbound 1.4.1
and Bind9).

We want to caution against drawing the conclusion that
DNSSEC should not be used. In fact, the best defense
against the poisoning attacks we described, is to apply
DNSSEC correctly in all resolvers and domains (without
using NSEC3 opt-out and allowing only strict validation);
this will certainly prevent many of our poisoning attacks,
and even defend against more powerful Man-in-the-Middle
adversaries. Note, however, that current DNSSEC specifica-
tion, would not prevent the NS-pinning attacks.

The vulnerability which allowed us to launch the poison-
ing attacks against recursive resolvers, is due to the fact that
the resolver advertises a large EDNS buffer, which is usually
larger than the MTU, e.g., 1500 bytes. Although support of
large DNS responses is critical to facilitate DNSSEC enabled
DNS responses, or public-key certificates [47], such long
responses can be (temporarily) sent over TCP, using path
MTU discovery and avoiding fragmentation. Resolver or
even at intermediate gateway (firewall) can achieve similar
result by setting a maximal EDNS buffer value to at most
1500, or even less, to avoid fragmentation (possibly using a
variant of path MTU discovery).

Another short-term defense, which administrators of re-
solvers can apply, is to reduce the maximal number of
fragments cached; e.g., currently 64 by default in Linux (per
(source IP , dest IP , protocol) triplet). Of course, reduction
in this parameter may also increase packet loss.

Resolves should also be careful to avoid caching NS or A
records received within a ‘non-existing domain’ response.

Yet another possible defense, for name servers, is to
always add a random RR to any packet over certain size (i.e.,
which may be fragmented). A simple type A resource record,
containing random IP address for some fictitious domain
name, would suffice. The TTL of such an RR should be set
to zero to prevent the resolver from caching that record. This
would prevent the attacker from being able to predict and
(correctly) adjust the checksum value.

Finally, we suggest caution when deploying the proposal
in [12], [13] (for server selection) which recommends to
avoid querying non-responsive servers. Resolvers that do
not conform to that recommendation, e.g., Bind9, are not
vulnerable to our server-pinning attacks.

REFERENCES

[1] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose,
“Protocol Modifications for the DNS Security Extensions,”
RFC 4035 (Proposed Standard), Internet Engineering Task
Force, Mar. 2005, updated by RFCs 4470, 6014. [Online].
Available: http://www.ietf.org/rfc/rfc4035.txt

[2] ——, “Resource Records for the DNS Security Extensions,”
RFC 4034 (Proposed Standard), Internet Engineering Task
Force, Mar. 2005, updated by RFCs 4470, 6014. [Online].
Available: http://www.ietf.org/rfc/rfc4034.txt

[3] ——, “DNS Security Introduction and Requirements,” RFC
4033 (Proposed Standard), Internet Engineering Task Force,
Mar. 2005, updated by RFC 6014. [Online]. Available:
http://www.ietf.org/rfc/rfc4033.txt

[4] J. Bau and J. C. Mitchell, “A security evaluation of DNSSEC
with NSEC3,” in Network and Distributed Systems Security
(NDSS) Symposium. The Internet Society, 2010. [Online].
Available: http://www.isoc.org/isoc/conferences/ndss/10/

[5] D. J. Bernstein, “DNSCurve: Usable security for DNS,”
Posted at: http://dnscurve.org/, 2010.

http://www.ietf.org/rfc/rfc4035.txt
http://www.ietf.org/rfc/rfc4034.txt
http://www.ietf.org/rfc/rfc4033.txt
http://www.isoc.org/isoc/conferences/ndss/10/

DNS request
DNSKEY?ORG.
DNS request

DNSKEY?ORG.
Spoofed second

fragment
Spoofed second

fragment

First fragment is
reassembled with

the (spoofed)
second fragment

First fragment is
reassembled with

the (spoofed)
second fragment

Authentic
second fragment

(cannot be reassembled
and is discarded
after 30 seconds)

Authentic
second fragment

(cannot be reassembled
and is discarded
after 30 seconds)

Forged A RRs of DNS servers of ORG.
Authentic RRs were:
Forged A RRs of DNS servers of ORG.
Authentic RRs were:

Figure 11. A wireshark capture presenting the packets in a DNS cache poisoning attack exploiting fragmented DNSKEY responses of org. The resolver
issues a query for a DNSKEY, and the spoofer sends a poisoned second fragment containing the forged A records for NS of org.

[6] D. Kaminsky, “It’s the End of the Cache As We Know It,”
Presentation at Blackhat Briefings, 2008.

[7] D. Dagon, M. Antonakakis, P. Vixie, T. Jinmei, and
W. Lee, “Increased DNS forgery resistance through 0x20-bit
encoding: security via leet queries,” in ACM Conference
on Computer and Communications Security, P. Ning,
P. F. Syverson, and S. Jha, Eds. ACM, 2008, pp.
211–222. [Online]. Available: http://doi.acm.org/10.1145/
1455770.1455798

[8] R. Perdisci, M. Antonakakis, X. Luo, and W. Lee, “WSEC
DNS: Protecting recursive DNS resolvers from poisoning
attacks,” in DSN. IEEE, 2009, pp. 3–12.

[9] A. Hubert and R. van Mook, “Measures for Making
DNS More Resilient against Forged Answers,” RFC 5452
(Proposed Standard), Internet Engineering Task Force, Jan.
2009. [Online]. Available: http://www.ietf.org/rfc/rfc5452.txt

[10] O. Gudmundsson and S. D. Crocker, “Observing DNSSEC
Validation in the Wild,” in SATIN, March 2011.

[11] V. Ramasubramanian and E. Sirer, “Perils of transitive trust
in the domain name system,” in Proceedings of the 5th ACM
SIGCOMM conference on Internet Measurement. USENIX
Association, 2005, pp. 35–35.

[12] M. Larson and P. Barber, “Observed DNS Resolution
Misbehavior,” RFC 4697 (Best Current Practice), Internet
Engineering Task Force, Oct. 2006. [Online]. Available:
http://www.ietf.org/rfc/rfc4697.txt

[13] Y. Yu, D. Wessels, M. Larson, and L. Zhang, “Authority
server selection of dns caching resolvers,” ACM SIGCOMM
Computer Communication Reviews, April 2012.

[14] D. J. Bernstein, “Breaking DNSSEC,” 3rd USENIX Work-
shop on Offensive Technologies, August 2009.

[15] C. A. Kent and J. C. Mogul, “Fragmentation
Considered Harmful,” Western Research Lab, Research
Report 87/3, dec 1987, see also abbreviated version
in proceedings of ACM SIGCOMM, 390–401, 1987.
[Online]. Available: ftp://gatekeeper.research.compaq.com/
pub/DEC/WRL/research-reports/WRL-TR-87.3.pdf

[16] J. Mogul and S. Deering, “Path MTU discovery,” RFC 1191
(Draft Standard), Internet Engineering Task Force, Nov.
1990. [Online]. Available: http://www.ietf.org/rfc/rfc1191.txt

[17] M. Mathis and J. Heffner, “Packetization Layer Path
MTU Discovery,” RFC 4821 (Proposed Standard), Internet
Engineering Task Force, Mar. 2007. [Online]. Available:
http://www.ietf.org/rfc/rfc4821.txt

[18] M. Zalewski, “A New TCP/IP Blind Data Injection Tech-
nique?” BugTraq mailing list post, http://lcamtuf.coredump.
cx/ipfrag.txt, 2003.

[19] F. Gont, “Security Implications of Predictable Fragment Iden-
tification Values,” Internet-Draft of the IPv6 maintenance
Working Group (6man), December 2011, expires June 17,
2012.

[20] ——, “Security Assessment of the Internet Protocol Version
4,” RFC 6274 (Informational), Internet Engineering Task
Force, Jul. 2011. [Online]. Available: http://www.ietf.org/rfc/
rfc6274.txt

[21] Y. Gilad and A. Herzberg, “Fragmentation Considered
Vulnerable: Blindly Intercepting and Discarding Fragments,”
in Proc. USENIX Workshop on Offensive Technologies,

http://doi.acm.org/10.1145/1455770.1455798
http://doi.acm.org/10.1145/1455770.1455798
http://www.ietf.org/rfc/rfc5452.txt
http://www.ietf.org/rfc/rfc4697.txt
ftp://gatekeeper.research.compaq.com/pub/DEC/WRL/research-reports/WRL-TR-87.3.pdf
ftp://gatekeeper.research.compaq.com/pub/DEC/WRL/research-reports/WRL-TR-87.3.pdf
http://www.ietf.org/rfc/rfc1191.txt
http://www.ietf.org/rfc/rfc4821.txt
http://lcamtuf.coredump.cx/ipfrag.txt
http://lcamtuf.coredump.cx/ipfrag.txt
http://www.ietf.org/rfc/rfc6274.txt
http://www.ietf.org/rfc/rfc6274.txt

Aug 2011. [Online]. Available: http://www.usenix.org/events/
woot11/tech/final/files/Gilad.pdf

[22] S. Antonatos, P. Akritidis, V. T. Lam, and K. G. Anagnostakis,
“Puppetnets: Misusing Web Browsers as a Distributed Attack
Infrastructure,” ACM Transactions on Information and System
Security, vol. 12, no. 2, pp. 12:1–12:15, Dec. 2008.

[23] A. Herzberg and H. Shulman, “Security of patched DNS,” in
ESORICS, 2012.

[24] J. Postel, “Internet Protocol,” RFC 791 (Standard), Internet
Engineering Task Force, Sep. 1981, updated by RFC 1349.
[Online]. Available: http://www.ietf.org/rfc/rfc791.txt

[25] J. Heffner, M. Mathis, and B. Chandler, “IPv4 Reassembly
Errors at High Data Rates,” RFC 4963 (Informational),
Internet Engineering Task Force, Jul. 2007. [Online].
Available: http://www.ietf.org/rfc/rfc4963.txt

[26] P. Vixie, “Extension Mechanisms for DNS (EDNS0),”
RFC 2671 (Proposed Standard), Internet Engineering Task
Force, Aug. 1999. [Online]. Available: http://www.ietf.org/
rfc/rfc2671.txt

[27] Kernel.org, “Linux Kernel Documentation,”
http://www.kernel.org/doc/Documentation/networking/
ip-sysctl.txt, 2011.

[28] Alexa, “The web information company,”
http://www.alexa.com/.

[29] T. Brisco, “DNS Support for Load Balancing,” RFC 1794
(Informational), Internet Engineering Task Force, Apr. 1995.
[Online]. Available: http://www.ietf.org/rfc/rfc1794.txt

[30] D. Wessels and M. Fomenkov, “Wow, that’sa lot of packets,”
in Proceedings of Passive and Active Measurement Workshop
(PAM), 2003.

[31] S. Sanfilippo, “About the IP Header ID,” http://www.kyuzz.
org/antirez/papers/ipid.html, Dec 1998.

[32] F. E. B. I. Domains, “Listing of Federal
Agency Internet Domains,” http://explore.data.gov/
Federal-Government-Finances-and-Employment/
Federal-Executive-Branch-Internet-Domains/k9h8-e98h,
February 2012.

[33] S. S. (via bugtraq), “Icmp Fragmentation Needed
Vulnerability Details: CVE-2001-0323,” June 2001. [Online].
Available: http://www.cvedetails.com/cve/CVE-2001-0323/

[34] F. Gont, “Icmp attacks against tcp,” October
2006. [Online]. Available: http://www.gont.com.ar/drafts/
icmp-attacks/draft-ietf-tcpm-icmp-attacks-01.txt

[35] ——, “ICMP Attacks against TCP,” RFC 5927
(Informational), Internet Engineering Task Force, Jul. 2010.
[Online]. Available: http://www.ietf.org/rfc/rfc5927.txt

[36] S. Son and V. Shmatikov, “The hitchhikers guide to dns
cache poisoning,” Security and Privacy in Communication
Networks, pp. 466–483, 2010.

[37] A. Khurshid, F. Kiyak, and M. Caesar, “Improving robustness
of dns to software vulnerabilities,” in Proceedings of the 27th
Annual Computer Security Applications Conference. ACM,
2011, pp. 177–186.

[38] S. Focus, “Bugtraq mailing list,” http://www.securityfocus.
com/vulnerabilities.

[39] T. Hardie, “Distributing Authoritative Name Servers via
Shared Unicast Addresses,” RFC 3258 (Informational),
Internet Engineering Task Force, Apr. 2002. [Online].
Available: http://www.ietf.org/rfc/rfc3258.txt

[40] Z. Liu, B. Huffaker, M. Fomenkov, N. Brownlee, and
K. Claffy, “Two days in the life of the dns anycast root
servers,” Passive and Active Network Measurement, pp. 125–
134, 2007.

[41] V. Pappas, Z. Xu, S. Lu, D. Massey, A. Terzis, and L. Zhang,
“Impact of configuration errors on dns robustness,” in ACM
SIGCOMM Computer Communication Review, vol. 34, no. 4.
ACM, 2004, pp. 319–330.

[42] D. Kaminsky, “It’s The End Of The Cache As We Know It,”
in Black Hat conference, August 2008, http://www.doxpara.
com/DMK_BO2K8.ppt.

[43] M. Andrews, “Negative Caching of DNS Queries (DNS
NCACHE),” RFC 2308 (Proposed Standard), Internet
Engineering Task Force, Mar. 1998, updated by RFCs
4035, 4033, 4034. [Online]. Available: http://www.ietf.org/
rfc/rfc2308.txt

[44] D. Atkins and R. Austein, “Threat Analysis of the Domain
Name System (DNS),” RFC 3833 (Informational), Internet
Engineering Task Force, Aug. 2004. [Online]. Available:
http://www.ietf.org/rfc/rfc3833.txt

[45] S. Castro, M. Zhang, W. John, D. Wessels, and K. Claffy,
“Understanding and preparing for dns evolution,” Traffic
Monitoring and Analysis, pp. 1–16, 2010.

[46] B. Laurie, G. Sisson, R. Arends, and D. Blacka,
“DNS Security (DNSSEC) Hashed Authenticated Denial
of Existence,” RFC 5155 (Proposed Standard), Internet
Engineering Task Force, Mar. 2008. [Online]. Available:
http://www.ietf.org/rfc/rfc5155.txt

[47] I. Violet, “Dnssec and tls,”
http://www.imperialviolet.org/2010/08/16/dnssectls.html,
Aug 2010.

http://www.usenix.org/events/woot11/tech/final/files/Gilad.pdf
http://www.usenix.org/events/woot11/tech/final/files/Gilad.pdf
http://www.ietf.org/rfc/rfc791.txt
http://www.ietf.org/rfc/rfc4963.txt
http://www.ietf.org/rfc/rfc2671.txt
http://www.ietf.org/rfc/rfc2671.txt
http://www.kernel.org/doc/Documentation/networking/ip-sysctl.txt
http://www.kernel.org/doc/Documentation/networking/ip-sysctl.txt
http://www.ietf.org/rfc/rfc1794.txt
http://www.kyuzz.org/antirez/papers/ipid.html
http://www.kyuzz.org/antirez/papers/ipid.html
http://explore.data.gov/Federal-Government-Finances-and-Employment/Federal-Executive-Branch-Internet-Domains/k9h8-e98h
http://explore.data.gov/Federal-Government-Finances-and-Employment/Federal-Executive-Branch-Internet-Domains/k9h8-e98h
http://explore.data.gov/Federal-Government-Finances-and-Employment/Federal-Executive-Branch-Internet-Domains/k9h8-e98h
http://www.cvedetails.com/cve/CVE-2001-0323/
http://www.gont.com.ar/drafts/icmp-attacks/draft-ietf-tcpm-icmp-attacks-01.txt
http://www.gont.com.ar/drafts/icmp-attacks/draft-ietf-tcpm-icmp-attacks-01.txt
http://www.ietf.org/rfc/rfc5927.txt
http://www.securityfocus.com/vulnerabilities
http://www.securityfocus.com/vulnerabilities
http://www.ietf.org/rfc/rfc3258.txt
http://www.doxpara.com/DMK_BO2K8.ppt
http://www.doxpara.com/DMK_BO2K8.ppt
http://www.ietf.org/rfc/rfc2308.txt
http://www.ietf.org/rfc/rfc2308.txt
http://www.ietf.org/rfc/rfc3833.txt
http://www.ietf.org/rfc/rfc5155.txt

	Introduction
	Altering DNS Responses via Fragment Reassembly Spoofing
	Enforcing Fragmentation
	DNS Query Size
	DNS Query Type
	Malicious Sub-Domain
	Spoofed ICMP Fragmentation Needed

	Fragments Reassembly Conditions
	Matching IP Header Fields
	Unpredictable IP-ID Allocation
	Per-Destination Incrementing IP-ID Allocation
	Globally Incrementing IP-ID Allocation
	Mixed Incrementing IP-ID Allocation

	Circumventing the Cache
	Fragment Reassembly Spoofing: Applications

	Name Server Pinning
	NS Pinning via NS Blocking
	Response Blocking
	NS Blocking
	NS Pinning
	Experimental Evaluation

	NS Pinning via Cache Poisoning
	NS-Pinning: Applications

	DNS Cache Poisoning
	Crafting a Valid DNS Response
	Validating UDP Checksum of DNS Response
	DNS Records Caching Policies

	Vulnerabilities of Incremental DNSSEC Deployment
	Islands of Security
	Permissive Resolvers

	DNSSEC NSEC3 opt/out
	DNS Cache Poisoning Attacks: Experimental Evaluation
	Domain Hijacking
	Injecting NS RR to NSEC3 Response

	Conclusions and Defenses
	References

