Gal A. Kaminka's Publications

Sorted by DateClassified by Publication TypeClassified by TopicGrouped by Student (current)Grouped by Former Students

Safest Path Adversarial Coverage

Roi Yehoshua, Noa Agmon, and Gal A. Kaminka. Safest Path Adversarial Coverage. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS-14), 2014.

Download

[PDF]489.1kB  

Abstract

Coverage is a fundamental problem in robotics, where one or more robots are required to visit each point in a target area at least once. While most previous work concentrated on finding a solution that completes the coverage as quickly as possible, in this paper we consider a new version of the problem: adversarial coverage. Here, the robot operates in an environment that contains threats that might stop the robot. We introduce the problem of finding the safest adversarial coverage path, and present different optimization criteria for the evaluation of these paths. We show that finding an optimal solution to the safest coverage problem is NP-Complete. We therefore suggest two heuristic algorithms: STAC, a spanning-tree based coverage algorithm, and GSAC, which follows a greedy approach. These algorithms produce close to optimal solutions in polynomial time. We establish theoretical bounds on the total risk involved in the coverage paths created by these algorithms and on their lengths. Lastly, we compare the effectiveness of these two algorithms in various types of environments and settings.

BibTeX

@InProceedings{iros14roi,
 author = {Roi Yehoshua and Noa Agmon and Gal A. Kaminka},
 title  = {Safest Path Adversarial Coverage},
 year   = {2014},
 booktitle = IROS-14,
 abstract = {Coverage is a fundamental problem in robotics,  where one or more 
  robots are required to visit each point in a target area at least once. While 
  most previous work concentrated on finding a solution that completes the coverage 
  as quickly as possible, in this paper we consider a new version of the problem: 
  \emph{adversarial coverage}. Here, the robot operates in an environment that 
  contains threats that might stop the robot. We introduce the problem of finding the safest adversarial coverage path, and present different optimization criteria for 
  the evaluation of these paths. We show that finding an optimal solution to the 
  safest coverage problem is NP-Complete. We therefore suggest two heuristic  algorithms: STAC, a spanning-tree based coverage algorithm, and GSAC, which 
  follows a greedy approach. These algorithms produce close to optimal solutions 
  in polynomial time. We establish theoretical bounds on the total risk involved 
  in the coverage paths created by these algorithms and on their lengths. Lastly, 
  we compare the effectiveness of these two algorithms in various types of 
  environments and settings.
 },
}

Generated by bib2html.pl (written by Patrick Riley ) on Sun Oct 29, 2017 21:31:22