
Bar-Ilan University

Department of Computer Science

MODELING CROWD BEHAVIOR BASED ON

SOCIAL COMPARISONTHEORY

by

Natalie Fridman

Advisor: Dr. Gal Kaminka

Submitted in partial fulfillment of the requirements for the Master’s degree

in the department of Computer Science

Ramat-Gan, Israel

May 2007

Copyright 2007



Abstract

Modeling crowd behavior is an important challenge for cognitive modelers.

Models of crowd behavior facilitate analysis and prediction of human group be-

havior, where people are close geographically or logically states, and are affected

by each other’s presence and actions. Existing models of crowd behavior, in a va-

riety of fields, leave many open challenges. In particular, psychology models often

offer only qualitative description, and do not easily permit algorithmic replication,

while computer science models are often simplistic, treating agents as simple de-

terministic particles. We propose a novel model of crowd behavior, based on Fes-

tinger’s Social Comparison Theory (SCT), a social psychology theory known and

expanded since the early 1950’s. We propose a concrete algorithmic framework

for SCT, and evaluate its implementations in several crowd behavior scenarios

such as pedestrian movement, gathering and imitational behavior. We show that

our SCT model produces improved results compared to base models from the

literature. We describe two possible implementations of SCT process in an archi-

tectural level. The first, which seems to follow directly from Festinger’s Social

Comparison theory, treats the SCT process as an uncertainty-resolution method.

The second, takes a different approach, in which an SCT process is constantly ac-

tive, in parallel to any problem solving activity. We present the implementation of

these approaches in Soar cognitive architecture. Moreover, we examine these ap-

proaches in the context of crowd behavior simulations and argue that surprisingly,

it is the second approach which is correct.
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Chapter 1

Introduction

Modeling crowd behavior is an important challenge for cognitive modelers. Mod-

els of crowd behavior facilitate analysis and prediction of the behavior of groups

of people, who are in close geographical or logical states, and are affected by each

other’s presence and actions. Accurate models of crowd behavior are sought in

training simulations [30], safety decision-support systems [5], traffic management

[14, 27], business and organizational science.

Existing models of crowd behavior, in a variety of fields, leave many open

challenges. In social sciences and psychology, models often offer only qualitative

description, and do not easily permit algorithmic replication. In computer science,

models are often simplistic, and typically not tied to specific cognitive science

theories or data. Moreover, existing computer science models often focus only on

a specific phenomenon (e.g., flocking, pedestrian movement), and thus must be

switched depending on the goals of the simulation.

We propose a novel model of crowd behavior, based on Social Comparison

Theory (SCT) [10], a social psychology theory that has been continuously evolv-

ing since the 1950s. The key ideas in this theory is that humans, lacking objective

means to evaluate their state, compare themselves to others that are similar. Sim-

ilarity, in SCT, is very loosely defined—indeed much of the literature on SCT

addresses with exploring different ways in which humans judge similarity.

While inspired by SCT, we remain deeply grounded in computer science; we

propose a concrete algorithmic framework for SCT, and evaluate its implemen-
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tations in several crowd behavior scenarios. We quantitatively compare the per-

formance of SCT crowd behavior model with popular models in the literature,

and show that SCT generates behavior more in-tune with human crowd behavior.

Moreover, unlike many previous models, SCT generalizes across social phenom-

ena. In particular, we evaluate the use of SCT model in generation of pedestrian

movement, gathering and imitational behavior.

In pedestrian movement generation, the SCT model accounts for group for-

mation in pedestrians that are inter-related, a phenomenon unaccounted for by

previous models; and where previous techniques apply, SCT shows improved re-

sults. In addition the SCT model accounts for group behavior in the presence of

obstacles, modeling the selection of group members to bypass obstacles in the

same direction as other members of the group.

In gathering towards a target location, the SCT model accounts for successful

gathering where participants are uninformed about the location. We show that the

SCT model results in a middle-ground between individual behavior (where each

agent is only aware of itself, and independently searches for the target location),

and a full-knowledge model (where all agents know the target location). We ad-

ditionally show that we can improve these results by adding a relatively small

percentage of agents that know the target location, to the general agent popula-

tion. This shows that in principle, social comparison can compensate for lack of

objective knowledge by the agent, as predicted by the psychology theory.

In the context of imitational behavior, the SCT model was evaluated in studies

with human subjects. The model was used to control the behavior of agents in a

3D virtual environment. The subjects ranked SCT to be a middle-ground between

completely individual behavior, and perfect synchronized (“solider-like”) behav-

ior. Independently, human subjects gave similar rankings to short clips showing

human crowds. While the similarity in the results is no proof that social compar-

ison the best model for modeling human behavior, it is certainly encouraging in

that the SCT is at least shown to be compatible with such behavior.

Finally, we discuss SCT as an hypothesized cognitive process. We describe

two possible implementations of SCT process in an architectural level. The first,

which seems to follow directly from Festinger’s Social Comparison theory, treats

the SCT process as an uncertainty-resolution method, i.e., as a weak (read: gen-
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eral) problem-solving method, which issocial. The second, which is less intu-

itive, takes a different approach, in which an SCT process is constantly active,

in parallel to any problem solving activity. Such a view necessitates the agents

to be constantly aware of others around them, and seems to require greater com-

putational cost. We present the implementation of these approaches in the Soar

cognitive architecture. Moreover, we examine these approaches in the context of

crowd behavior simulations and conducted a set of experiments that contrast these

approaches.

Based on the results from experiments, we argue that surprisingly, it is the

second approach which is correct, i.e., that SCT is constantly active, regardless of

the problem-solving activity of the agent. This conclusion raises questions as to

the role of social reasoning in cognitive architectures and the mind. In particular,

it leads to the conclusion that modeling of other agents, which is a precursor to

social comparison, occurs as a fundamental cognitive process at an architectural

level, rather than as a part of problem solving.
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Chapter 2

Background and Motivation

Social psychology literature provides several views on the emergence of crowds

and the mechanisms underlying its behaviors. These views can inspire compu-

tational models, but are unfortunately too abstract to be used algorithmically. In

contrast, computational crowd models tend to be simplistic and focus on specific

crowd behaviors (e.g, flocking). A common theme in all of them is the gener-

ation of behavior from the aggregation of many local rules of interaction, e.g.,

[27, 25, 26, 20]. However, these models have rarely, been validated against hu-

man (or animal) data. Indeed, there is generally limited quantitative data on the

behavior of human crowds at a resolution which permits accurate modeling. The

exception is the formation of lanes (in opposing directions) in human pedestrian

movements and evacuation behavior [9, 20], which have been extensively investi-

gated and for which specific performance measures are well defined (reduced lane

changes, flow, time between alarm and last person that leave the building etc.).

Social psychology. A phenomenon observed with crowds, and discovered early

in crowd behavior research is that people in crowds act similar to one another,

often acting in a coordinated fashion, as if governed by a single mind [21, 2].

However, this coordination is achieved with little or no verbal communication.

Le Bon [21] emphasized a view of crowd behaviors as controlled by a "Col-

lective Mind", and observed that an individual who becomes a part of the crowd is

transformed into becoming identical to the others in the crowd. Le Bon noted that

individuals seem to lose their individuality (in terms of personality and thought)
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when becoming part of a crowd. Le Bon explains the homogeneous behavior of a

crowd by two processes: (i)Imitation, where people in crowds imitate each other;

and (ii)Contagion, where people in a crowd behave very differently from the way

they usually do, individually.

Freud [11] expanded on Le Bon by theorizing that individuals in the crowd

identify with the leader and with each other, and therefore behave as one. As

a corollary, crowd behavior can be controlled by the leader, as the individuals

imitate that person.

Another phenomenon that was addressed by researchers is what makes an

individual be part of a crowd. According to Allport’s theory, individuals become

a part of the crowd behavior when they have a "common stimulus" with people

inside the crowd; for example, a common cause [2]. Allport agrees with Le Bon

[21] about the homogeneous behavior of the crowd, but his explanation of this

phenomenon is that similar people act in similar ways; otherwise they would not

be a part of the same group. Thus, according to Allport, "the individual in the

crowd behaves just as he would behave alone, only more so."

We based our work on social comparison theory [10], which (to the best of our

knowledge) has never been applied to modeling crowd behavior. Nevertheless,

as we show in the next section, key elements of the theory are at the very least

compatible with those theories discussed above.

Computational models. Work on modeling collective behavior has been car-

ried out in other branches of science, in particular for modeling and simulation.

Inspired by different science fields, researchers are developing models for simu-

lation of collective behavior.

Reynolds [25] simulated bird flocking using simple, individual-local rules,

which interacted to create coherent collective movement. There are only three

rules: avoid collision with neighbors, match velocity with neighbors and stay

close to the center of gravity of all neighbors. Each simulated bird is treated

as a particle, attracted and repelled by others. On the one hand there is a desire to

stay close to the flock, but on the other hand, there is a desire to avoid collisions.

However, this model was limited only to the interaction of the agents, and did not

allow for their individual goals (e.g., their own steering behavior).
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Tu and Terzopoulos [33] simulated motion of artificial fish that addressed indi-

vidual goals. Like Reynolds’ "boids", the artificial fish are autonomous creatures

which have simple behaviors and together are able to create a more complex, col-

lective behavior. However, unlike Reynolds’ boids, that selected their behavior

based on the current state of their neighbors, each fish revealed habits and mental

state (for example hunger, fear etc.) that also impact behavior selection. Indeed,

Reynolds later expanded his work on collective movement in [26] but, this time

allowing for a steering behavior for the autonomous agents. In the revised model,

each agent has a set of simple steering behaviors such as seek, flee, pursuit, evade,

etc. The combination of these simpler behaviors creates a complex steering be-

havior.

Similar ideas have been applied in swarm robotics. Matarić [22] sees collec-

tive (complex) behaviors as a combination of basic behaviors. Each robot has

spatial behaviors (controllers) that are combined to create different kinds of group

behavior: for example, flocking consisting ofsafe-wandering(moving around

without bumping),homing, dispersion(moving away from other agents), andag-

gregation(moving towards other agents). The combined outputs of the basic be-

haviors provide a velocity vector which is used to control the robot.

Yamashita and Umemura [37] take a different approach in simulating panic

behavior. While inspired by Reynolds’ boid model, they propose a model where

each simulated person moves by three instincts: escape instinct, group instinct

and imitational instinct. According to Yamashita and Umemura, when a person is

in panic, he or she acts based on their instincts which make their decision making

process much simpler.

Henderson compared pedestrian movement to gaskinetic fluids. Based on ex-

periments on real human crowds, he showed in [17] that crowd distribution is

compatible with Maxwell-Boltzmann’s distribution. Henderson [18] developed a

pedestrian movement model based on the Maxwell-Boltzmann theory. Since each

person has mass and velocity, the crowd may be transformed to liquid gas and

under some assumption the Maxwell-Boltzmann theory may be applied. Based

on Boltzmann-like equations, Helbing [13] developed a general behavior model

for simulation of crowd dynamics. The proposed model takes into account social

forces caused by interaction between the individuals and external or spontaneous
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forces which are caused by the physical environment.

Helbing et al. [15, 14] observed phenomena of self-organization in collec-

tive motion which can be caused by interaction among pedestrians. By self-

organization, it means that there are some behavioral phenomena which were not

planned: for example, creation of lane formation in pedestrian movement. These

lanes are created as a result of pedestrians moving against the flow. When a pedes-

trian moves against the flow, he experiences an interaction which makes him move

a little aside, in contrast to a pedestrian who moves with the flow and will not have

an interaction. The number of lanes that are created cannot be planned. It depends

on the width of the street and on pedestrian density.

Helbing and Vicsek [16] expanded their physical model by using game theory.

The attraction force can be expanded to profitable force which may lead to opti-

mal self-organization in pedestrian movement. Each entity calculates "expected

success" per each possible action and the action with maximum success will be

chosen. In pedestrian relations, actions are possible directions that an entity can

move to and optimal self-organization is minimal interaction between entities.

Adriana Brown et al. [6] examined how individual characteristics impact

crowd evacuation. They expanded Helbing’s physical model by adding to each

agent individual parameters, such as dependence level and altruism level. Ac-

cording to the model, there will be a creation of groups which are combined

from altruism and dependent agents. By changing these attributes, they examined

crowd evacuation by measuring the flow of people passing the door per second

and population distribution in the flow.

Blue and Adler [4] proposed a different approach to module collective dynam-

ics. They used Cellular Automata (CA) in order to simulate collective behaviors,

in particular pedestrian movement. The focus is again on local interactions: Each

simulated pedestrian is controlled by an automaton, which decides on its next ac-

tion or behavior, based on its local neighborhoods. These rules are responsible

for making a decision about lane changing and forward movement: If the way

forward is free, then it is taken. If not, then the automaton seeks to go left or

right. If both lanes are available, one is chosen arbitrarily. Blue and Adler showed

that this simple rule results in the formation of lanes in movement, similarly to

those formed in human pedestrian movement [35]. Toyama et al. [32] expanded

14



the cellular automata model by adding different pedestrian characteristics, such

as speed, gender, repulsion level, etc. The model was examined on bi-directional

pedestrian movement behavior and on evacuation behavior. The experiment anal-

ysis shows that macroscopic behavior of homogeneous agents is different from

heterogeneous agents.

Osaragi [24] proposed an agent-based model for simulating pedestrian flow by

using the concept of pedestrian mental stress. Pedestrian mental stress increases

as a result of other pedestrians (density) and whether the pedestrian is unable to

move to her destination using the shortest pass. To decrease her mental stress, the

pedestrian may dynamically change her direction or walking velocity. Because of

these dynamic changes, the simulated pedestrians are heterogeneous. Unlike in

other models, the model parameters were estimated using observed data.

Kretz [20] proposes the Floor field-and-Agent based Simulation Tool model

(F.A.S.T) which is discrete in space and time model for pedestrian motion. The

F.A.S.T model can be classified as an extension of probabilistic Cellular Automata

(PCA). In this model there are three levels of decision making: 1. The choice of

an exit. 2. The choice of a destination cell. and 3. The path between the current

and destination cell. The F.A.S.T model has been validated against human data.

In particular, the model simulation results of evacuation scenario was compared

to results of evacuation exercise at a primary school.

In these previous works above, the behavior of crowds in every domain of

study (pedestrian movement, flocking, evacuation, etc.) is computed using a dif-

ferent algorithm, yet the actions and perceptions remain largely invariant (e.g.,

distances to others, occupied spaces versus empty spaces, goal locations, etc.).

Instead, the computation itself changes between modeled behaviors.

For instance, many models for crowd behavior utilize cellular-automata (CA),

which differ between domains. One CA model for pedestrian movement [4] uses

a set of 6 IF-THEN rules which work in parallel for all cells, to simulate the

movement of pedestrians in cells. The rules utilize knowledge of the occupancy

in adjacent (rules 1,3 in [4]) and farther cells (rule 2), as well as of the distance

to oncoming pedestrians in the same lane (rules 4, 6). The rules set the forward

velocity and position of the entities, by using a set of non-deterministic choices

(sub-rules 5a,5b,5c), biased by distributions which differ depending on the envi-
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ronmental settings (e.g., choose from a uniform 50%/50% split distribution if two

nearby cells are occupied, or from a 10%/80%/10% distribution when three cells

are available). In contrast, a recent CA model for evacuation [31] uses knowledge

of adjacent cells and distances to exits, and sets the position of the entities. Thus

the actions and perceptions of each entity are similar to those used in the pedes-

trian model. But the algorithmic computation of the new position is done in two

deterministic rules [31, pp. 17], which involve no arbitrary choices at all.

In contrast to these previous investigations, we seek a single cognitive mech-

anism that, when executed by individuals, would give rise to different crowd

behaviors, depending on the perceptions and actions available to the agents. In

other words, our goal is to unravel asingle computational mechanism—a single

algorithm—which would account for different crowd phenomena, by virtue of the

actions and perceptions available to each individual.
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Chapter 3

A Model of Social Comparison

We took Festinger’s social comparison theory (SCT) [10] as inspiration for the

social skills necessary for our agent in order to be able to exhibit crowd behav-

ior. According to social comparison theory, people tend to compare their behavior

with others that are most like them. To be more specific, when lacking objective

means for appraisal of their opinions and capabilities, people compare their opin-

ions and capabilities to those of others that are similar to them. They then attempt

to correct any differences found. This section shows how SCT can be turned into

a concrete algorithm, to be used for generating crowd behavior.

3.1 Festinger’s Social Comparison Theory

Festinger [10] presents social comparison theory (SCT) as an explicit set of ax-

ioms. The following subset of axioms (re-worded) are particularly relevant:

• When lacking objective means for evaluation, agents compare their state to

that of others;

• Comparison increases with similarity;

• Agents take steps to reduce differences to the objects of comparison.

Newell [23] classified each of Festinger’s axioms with respect to the type of

agent it assumes, and concluded that in fact, SCT may be used in principle to
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generate social behavior out of axioms that are largely non-social (in the sense

that they do not cause agents to actively interact). However, Newell’s discussion

was essentially philosophical: No algorithm was suggested, nor any method for

using SCT’s axioms as the basis for a computational process.

To be usable by computerized models, SCT’s axioms must be transformed into

an algorithm that, when executed by an agent, will proscribe social comparison

behavior. To do this, we re-examined Festinger’s discussion and examples of how

the axioms apply.

For instance, Festinger proposes that when lacking objective means for evalu-

ation, people compare their opinions and capabilities to those of others. He then

carefully notes that the comparison takes place at the level of the opinion or capa-

bility: “Thus, if a person evaluates his running ability, he will do so by comparing

his time to run some distance with the times that other persons have taken.” [10,

p. 116].

Later on, in discussing how actions are selected to minimize differences, he

again notes that the action is selected at the level at which the difference is found:

“When pressures toward uniformity exist with respect to abilities, these pressures

are manifested less in social process and more in action against the environment

which restrains movement. Thus, a person who runs more slowly than others with

whom he compares himself, and for whom the ability is important, many1 spend

considerable time practicing running. In a similar situation where the ability in

question is intelligence, the person may study harder.” [10, p. 126].

Based on these observations, we take another step towards the modeling of

social comparison theory. We propose a concrete algorithmic framework for SCT

that can be executed by an agent. Moreover, we propose the use of SCT algo-

rithmic framework for modeling crowd behaviors. In social psychology there are

several views on the mechanisms underlying individual that is a part of crowd be-

havior. However, to the best to our knowledge, social comparison theory has never

been connected to crowd behavior phenomena. We believe that SCT algorithmic

framework can provide social skills that are necessary for agents in order to exhibit

crowd behavior phenomenons. The basis of our belief is that social comparison

theory may account for Le Bon’s [21] characteristics of crowd behavior:

1This is likely a typo in the original manuscript, to be replaced by ”may“.
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Imitation. Using social comparison, people may adopt others’ behaviors. Fes-

tinger notes [10]: "The drive for self evaluation is a force acting on persons to

belong to groups, to associate with others. People, then, tend to move into groups

which, in their judgment, hold opinions which agree with their own“.

Contagion. One implication of SCT is the formation of homogeneous groups.

Festinger writes [10]: "The existence of a discrepancy in a group with respect to

opinions or abilities will lead to action on the part of members of that group to

reduce the discrepancy".

3.2 An SCT Algorithm

In order to build algorithmic framework for SCT, each observed agent is assumed

to be modeled by a set of features and their associated values. For each such agent,

we calculate a similarity values(x), which measures the similarity between the

observed agent and the agent carrying out the comparison process. The agent with

the highest such value is selected. If its similarity is between given maximum and

minimum values, then this triggers actions by the comparing agent to reduce the

discrepancy.

The process is described in the following algorithm, which is executed by

comparing agent.

1. For each known agentx calculate similaritys(x)

2. c ← argmax s(x), such thatSmin < s(c) < Smax

3. D ← differences between me and agentc

4. Apply actions to minimize differences inD.

In line 1, the comparing agent (me, for short) compares itself with other agents.

We model each agent as an ordered set of features, where similarity can be calcu-

lated for each feature independently of the others. We use a weighted linear sum

to compute the similarity measures(x):

s(x) =
k∑

i=0

wifi
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wherek is the feature index,fi similarity in featurei, 0 ≤ fi ≤ 1, andwi the

weight of the feature in overall similarity (non-negative).

For each calculated similarity value, we check in line 2 if it is bounded by

Smin andSmax, and pick the agent that maximizes the similarity, but still falls

within the bounds.Smin denotes values that are too dissimilar, and the associated

agents are ignored. Festinger writes [10]: “When a discrepancy exists with respect

to opinions or abilities there will be tendencies to cease comparing oneself with

those in the group who are very different from oneself”. Respectively, there is

also an upper bound on similaritySmax, which prevents the agent from trying

to minimize differences where they are not meaningful or helpful. For instance,

without this upper bound, an agent that is stuck in a location may compare itself

to others, and prefer those that are similarly stuck in place.

In line 3, we determine the list of featuresfi that indicate a difference with the

selected agentc. We order these features in an increasing order of weightwi, such

that the first feature to trigger corrective action is the one with the least weight.

The reason for this ordering is intuitive, and we admittedly did not find evidence

for it in the literature. However, no evidence was provided against this ordering,

and it empirically worked better in the experiments (see below).

Finally, in step 4 of the algorithm, the comparing agent takes corrective action

on the selected feature. Note that we assume here that every feature has associated

corrective actions that minimize gaps in it, to a target agent, independently of

other features. Festinger writes [10]: “The stronger the attraction to the group the

stronger will be the pressure toward uniformity concerning abilities and opinions

within that group”. To model this, we use a gain functiong(o) for the action

o, which translates into the amount of effort or power invested in the action. For

instance, for movement, the gain function would translate into velocity; the greater

the gain, the greater the velocity.

g(o) =
Smax − Smin

Smax − s(c)
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Chapter 4

Modeling Pedestrian Movement

The coordinated behavior of crowds has often been investigated in the context of

pedestrian dynamics. Pedestrian motion (direction and velocity) is affected not

only by physical elements (e.g., the sidewalk), but also by the motion of other

pedestrians. Wolff [35] noted that pedestrians have a hight degree of cooperation

and coordination which without it, walking on sidewalk would be impossible.

To learn more about microscopic and macroscopic pedestrians’ behavior, Daa-

men and Hoogendoorn [9] performed empirical experiments on human crowds, in

particular in terms of movement as pedestrians. In these experiments, participants

were asked to walk through a monitored area, in both directions. Their move-

ments were recorded. One conclusion was that "During capacity conditions, two

trails or lanes are formed: pedestrians tend to walk diagonally behind each other,

thereby reducing the head ways and thus maximizing the use of the infrastructure

supply".

Since then, lane formations have been a hallmark of pedestrian movement

models. Quicker lane formations typically leads to improved flow through the

area, and the more agents organize into lanes, the less their need to spend efforts

coordinating with others (change lanes). It is thus generally assumed that when

measuring lane changes over time, improved models lead to a reduction in the

number of lane changes.

We explore the use of SCT in generating pedestrian movements in different

settings (individual, groups, with and without obstacles) and compare its perfor-
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mance to known models. Our goal is to explore if SCT model can account for

common pedestrian behavior phenomenons like lane formations in bidirectional

movement, and movement in groups, with and without obstacles.

To implement the model for pedestrians movement experiments, we used Net-

Logo [34]. We simulated a sidewalk where agents can move in a circular fashion

from east to west, or in the opposite direction. Each agent has limited vision dis-

tance (beyond this distance it cannot see). It also has a cone-shaped field-of-view

of 120 degrees. Each agent initially moves with a default walking velocity (in our

case, 0.1). Agents are not allowed to move through other agents, and thus no two

agents can occupy the same space.

Figure 4.1 shows the NetLogo sidewalk environment, in an initial state where

simulated pedestrians are randomly placed about. Each small triangle is a sim-

ulated pedestrian, able to move left-to-right or right-to-left. Pedestrians exiting

the sidewalk on any side appear on the other side, heading in the same direction.

Figure 4.2 shows an end-result from one of the experiments (described below),

where lanes have formed.

 

Figure 4.1:Initial NetLogo sidewalk.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2:Lane formations - Experiment end-results.

Each agent has a set of features and its corresponding weight. For simulating

pedestrian movement, we used the following features and weights:
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Walking direction (weight: 2). Agents can move in two opposite directions, east

and west.

Color (weight: 3). Each agent has a color (blue, pink, red, green, etc.)

Position (weight 1). Each agent has a position, given in terms of distance and

angle. Distance - Represents the vicinity in position between me and other

agent.

The similarities in different features (fi) are calculated as follows.fcolor = 1 if

color is the same,0 otherwise.fdirection = 1 if direction is the same,0 otherwise.

and finally, fdistance = 1
dist

, wheredist is the Euclidean distance between the

positions of the agents.

The rationale for feature priorities, as represented in their weights, follows

from our intuition and common experience as to how pedestrians act. Positional

difference (distance) is the easiest difference to correct, and the least indicative

of a similarity between pedestrians. Direction is more indicative of a similarity

between agents, and color even more so. If an agent sees two agents, one in

the same direction as it (and far away), and the other very close to it (but in the

opposite direction), it will calculate greater similarity to the first agent, and try to

minimize the distance to it (this may cause a lane change).

Each agent calculatess(x) according to the model. If the chosen feature for

closing the gap is distance, then the velocity for movement will be multiplied by

the calculated gaing(o). For other features (which are binary), the gain is ignored.

To evaluate the SCT model, we contrast it with a popular alternative model,

often used in pedestrian crowd research [4, 15]. In thisindividual choicemodel,

each agent chooses lanes arbitrarily if forward movement is blocked. This model

was repeatedly shown to produce lane formations.

We compare these models as is commonly done in pedestrian movement ex-

periments: We controlled forcrowd density, calculated as the number of agents

divided by the area. We follow the literature in measuring two principal character-

istics of pedestrian movement: the total number oflane changes(lower numbers

indicate improved lane formations), and theflow (average speed divided by the

space-per-agent; higher flow is better).

23



In the following sections, we evaluate the social comparison model and its im-

plementation in modeling pedestrian movement. The basic movement pattern that

our simulated pedestrians follow, stemming from the social comparison model, is

as follows: Each agent follows an initially set direction. It chooses moving in this

direction, unless blocked. If forward movement is indeed blocked, the agent can

change lanes to the left or right. It will choose the lane where there is an agent

that is similar to it (if such an agent exists); otherwise, it chooses arbitrarily.

4.1 Experiment 1: Independent Pedestrians

Our first experiment contrasted the social comparison model with previous mod-

els. We begin by examining individual pedestrian movements, where each syn-

thetic pedestrian is independent of others. Each agent had a unique color. Each

agent’s direction (east or west) and initial position was chosen randomly. We con-

trasted the social comparison model with that of individual choice, which was

shown to produce lane formations [35, 14, 15] and is considered to be a base

model for pedestrian models.

For the purpose of this experiment, we fixed the gain component at 1 (see

below for experiments examining gain).Smax was set at 6 (which means any

dissimilarity other than color triggers action, andSmin was set at 2 (which means

that agents that differed only in distance (but not by color or direction) were not

considered similar. Each trial was executed for 5000 cycles.

Figure 4.3 shows lane changes for the individual-choice and social comparison

models. The X-axis measures density. The Y-axis measures the number of lane

changes during the course of 5000 cycles. Each configuration was repeated 30

times. Figure 4.4 measures flow for the two models; the X-axis again measures

density, the Y-axis measures the flow.

The figures shows that the number of lane changes is significantly lower than

that of the individual-choice model, implying that lanes form faster and are main-

tained longer with the social-comparison models. However, as the flow results

show, there are no meaningful differences in flow. In other words, the social com-

parison model performs better, but with essentially no cost to the flow.
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Figure 4.3:Independent pedestrians’ lane changes.

Figure 4.4:Independent pedestrians’ flow.

25



4.2 Experiment 2: Independent Pedestrians with Vary-

ing Gain

The next set of experiments explored the performance of the model when the gain

component was allowed to vary, per its definition in the social comparison model.

We repeated the individual pedestrian experiments, though ignoring color: All

agents moving east were colored red, and all agents moving west were colored

blue. Because of this, agents really see only two kinds of agents: Those who

have similarity of 1 (or less) , and those with similarity of 5 (or more). Thus the

only way to vary the gain, is to vary theSmin andSmax values, as they set the

enumerator in the gain calculation.

To evaluate the effect of the gain, we contrasted three variants of the social

comparison model introduced earlier:

• Smax = 5.5, Smin = 5, i.e.,g(o) = 1

• Smax = 5.5, Smin = 4, i.e.,g(o) = 3

• Smax = 5.5, Smin = 2, i.e.,g(o) = 7

Figure 4.5 shows the initial positions of the agents in one of the trials (4.5(a)),

and typical results after 5000 cycles, with a gain of 1 (4.5(b)), gain of 3 (4.5(c)),

and gain of 7 (4.5(d)). The figures show how the increased gain causes the agents

to group more closely together.

Figures 4.6 and 4.7 show the lane-changes and flow in these experiments. The

figures show that while again, there is no reduction in flow, there is significant

improvement to the number of lane changes, as the gain increases.
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(a) Initial positions.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) g(o) = 1.

 
(c) g(o) = 3.

 
(d) g(o) = 7.

Figure 4.5:Screen shots, Independent Pedestrians: Varied Gains.

27



Figure 4.6:Independent Pedestrians with Varying Gain: Lane Changes

Figure 4.7:Independent Pedestrians with Varying Gain: Flow
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4.3 Experiment 3: Pedestrians in Groups

We now move away from considering scenarios previously appearing in the lit-

erature, to exploring new types of movements. In particular, we experiment with

pedestrian movement where the pedestrians belong to different groups internally.

This type of situation arises, for instance, in pedestrians that are composed of

families and/or friends. The individual-choice model does not account for such

behavior, because it does not treat the group in any way. In contrast, we expect

our social comparison model to treat groups (agents that belong to the same group

would be more similar).

To examine this hypothesis, we carried out experiments in which color is

meaningful: Agents belonging the same group have the same color. In these

experiments, all agents move in the same direction, again, for 5000 cycles. Gain

was allowed to vary per the model, as described above. The population contains

150 agents with a different number of colors (we experimented with 5, 10, and 20

color). Walking direction of all agents is West.Smax was set at 6.5, andSmin was

set at 2.

To account for the western cultural intuition that friends (and family) walk

side-by-side, rather than in columns, we added another feature: The similarity

in position along the x-axis. The revised features and weights are as follows:

Direction, with weight 2;Distance, with weight 0.5;Color, with weight 3;X-

Coordinate, with weight 1.

The rationale behind these weights is that the agent will first close the distance

gap with the agent selected as most similar, and only then try to locate itself on

the same X-Coordinate.

There exists a significant challenge in being able to quantitatively measure the

grouping results of the experiments. Normally, a simple clustering measure would

do, as all agents of same color would group together. However, due to the initial

random positions and the limited visual range of agents, agents of the same color

may never group together, instead forming several groups that are far from each

other.

Balch [3] has offered a clustering measure,hierarchical social entropy, that

can address such cases. The key intuition behind this measure is to iteratively
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(a) Initial random positions.

 
(b) After 5000 cycles, individual-choice model.

 
(c) After 5000 cycles, social comparison model.

Figure 4.8:Screen shots, Grouped Pedestrian Movement.

sum entropy over increasing areas. The measure equals 0 when all agents are

positioned in the exact same spot, and grows with their spreading around. Thus

lower values indicate improved grouping. [3] provides the details.

Table 4.1 shows the hierarchical social entropy results for the individual-choice

and social-comparison models. Each row corresponds to an experiment with

a different number of colors. The table shows (third column) that the social

comparison model provides for significantly improved grouping compared to the

individual-choice model (one-tailed t-test, atα = 0.05 significance level).
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# Groups Individual-Choice Social Comparison
5 173.2 87.4
10 143.3 85.8
20 101.5 60.1

Table 4.1:Grouping measurements of individual-choice and social compari-
son models. Lower values indicate improved grouping.
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4.4 Experiment 4: Groups and Obstacles

Our final set of pedestrian movement experiments addresses the response of groups

within moving pedestrian crowds to obstacles. Intuitively, we recognize that such

groups will choose to stick together in face of an obstacle (moving together to one

side of it), while individual-choice pedestrians choose arbitrarily. We sought to

examine whether the social comparison models would account for this behavior.

We created a sidewalk environment as described earlier, but this time with an

elongated rectangular obstacle in the middle of it. When agents approach this ob-

stacle, they must select to move to one of its sides. In the experiments, we allowed

100 agents of two colors (red and blue) to move west from their initial positions.

Each agent has the following features: Direction, distance and color (weights:

same as in the individual pedestrian experiments). Agents use comparison at all

times, and not just when stuck.Smax was set at 6.5,Smin at 3.

Figure 4.9 shows the initial random positions of the agents (4.9(a)), their po-

sitions after going moving for a while using the individual-choice model (4.9(b),

and their positions when moving using the social comparison model (4.9(c)). The

figures show clearly that the the social comparison model causes similarly-colored

agents to group together on one side of the obstacle, passing it together. In con-

trast, the individual-choice model has no such effect on the behavior of the agents.

Quantitative analysis again proved challenging, as here no clusters form. We

needed, instead, to measure to what degree agents of the same color stay on one

side of the obstacle. To do this, we defined virtual “gates” on either side of the

obstacle, and monitored agents that move through them. Each trial allowed 100

agents to pass through the gates 10 times (i.e., 10waves). At the end of each

wave, we calculated (separately) the entropy of each color as its agents are divided

between the two gates. A score of 0 indicates perfect grouping (all agents of same

color pass through same gate). A score of 1 indicates perfect lack of grouping (the

agents are evenly split between the two groups). The final result of each wave is

the average entropy value across the two colors.

Figure 4.10 shows the average entropy value for each wave, for the ten waves.

The results are averaged over 25 trials. The X-axis shows the wave number (1–

10). The Y-axis measures the entropy. The figure shows that the entropy value of
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(a) Initial random positions.

 
(b) Final positions, with individual-choice model.

 
(c) Final positions, with social-comparison model.

Figure 4.9:Screen shots, Grouped pedestrians’ movement around the obsta-
cle.

the social-comparison model quickly goes down from 1 and approaches 0, while

it remains around 1 for the individual-choice model. Indeed, after 10 waves, the

average entropy value for the social comparison model is 0.131, while it is 0.992

for the individual-choice model.
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Figure 4.10:Entropy of grouped pedestrians’ movement around the obstacle.
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Chapter 5

Modeling Gathering Behavior

One of the common forms of collective interactions is gathering around a target

location [36, 1, 8, 7]. Such gatherings are not necessarily organized in such a man-

ner that all participants know the exact place and time. For example, in response

to some significant event, there may be spontaneous demonstrations where most

participants are uninformed of the exact location and may not even plan to become

a part of such an event. According to Wright [36], such group forms occur with

almost no verbal communication. Wright noted that "group forms are not only a

product of collective interactions, but they also serve as a medium of nonverbal

communication in those interactions."

The gathering problem, has been also extensively studied in autonomous multi

robot systems. In particular, gathering at a point that is not fixed in advance[1, 8,

7]. The main motivation behind these studies is to identify the minimal capabili-

ties that each robot should have in order to produce collective gathering regardless

of specific target location. Thus, the research interest is on robots that are weak

and simple in the sense that they have no common knowledge, no common coor-

dinate system and no direct communication.

In this section, we focus on spontaneous gatherings around a target location,

where all participants are uninformed about the location. Similar to autonomous

robotic characteristics [1, 8, 7], we consider our agents to be without common

knowledge and direct communication. However, unlike in [1, 8, 7] where the

gathering should occur regardless of specific target location, in this research the
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target location is fixed in advance and recognizable to the agents if it is in their

sensing range. We define one agent (leader), which is fixed in space, to define the

target location. We explore whether the SCT model is able to account for such

gathering behavior; in particular, whether all SCT model agents are able to reach

the leader’s location without previous information about it. We limited the agents’

field of view, so only those closest to the leader are able to see it, thus enabling us

to explore whether SCT model agents are able to find the leader.

In the simulation of gathering behavior, we used the same features set and their

weights as in grouping pedestrian movements (for further information see section

4.3). Each agent has the following features and their corresponding weights:

• Direction, with weight 2

• Distance, with weight 0.5

• Color, with weight 3

• X-Coordinate, with weight 1

The features of similarity (fi) and the gain value (g(o)) are calculated in the same

way as in pedestrian movement model:

• fdirection = 1 if direction is the same,0 otherwise.

• fdistance = 1
dist

, wheredist is the Euclidean distance between the positions

of the agents.

• fcolor = 1 if color is the same,0 otherwise.

• fx−coordinate = 1 if x coordinate is the same,0 otherwise.

The gain value (g(o)) is relevant only for distance feature, for other features

(which are binary), the gain is ignored.

To implement the model for gathering behavior experiments, we used NetL-

ogo [34]. We define a terrain in a rectangular shape, with 64 patches in the width

and 38 patches in the length. In this terrain, all agents are able to move freely

to any direction within the boundaries. We placed a leader in the middle of the

terrain and the agent’s task was to gather around the leader. As in the pedestrian
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movement model, each agent has a limited field of view. In this simulation, each

agent has a cone-shaped field of view of 120 degrees. The range of the field of

view was limited to 5 patches, which is considered to be a low value compared

with terrain size. Therefore, most of the agents are not able to see the leader in

their initial positions.

Figure 5.1 shows the NetLogo terrain environment in an initial state where

simulated agents are randomly placed about and have a random direction. Figure

5.2 shows an end result from one of the experiments (described below), where

agents have finished gathering.

Figure 5.1:Initial NetLogo sidewalk.

Figure 5.2:Gathering around the leader - Experiment end-result.

To gather around the leader, our current SCT model should be expanded to be

able to simulate crowd behaviors under leadership presence and influence. There

should be two main expansions. First, an agent needs to be able to calculate
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greater similarity value to a leader than to other agents. Another expansion is in

choosing a corrective action. The agent should be able to take a different correc-

tive action when compared with a leader than with other agents. For example, in

gathering around the leader behavior, if the chosen feature for correction is direc-

tion, then the corrective action should be turning towards the same angle as the

selected agent. However, if the selected agent is a leader, then the corrective action

should be to face the leader (in this behavior). In general, the issue of leadership

and its interactions with the SCT model is an open research issue, that we hope to

investigate in more depth in future work. Here, we limit ourselves to this simple

model of leadership as changing the preference of the selected corrective action.

We focus on the ability of agents to reach the leader without previous infor-

mation about its location. Thus, in our simulation of gathering behavior we made

a few assumptions. First, in order to be more visible to viewers, we presented

the leader using a different color than for other agents. In the current simulation,

color is the only feature that differentiates the leader from other agents. Therefore,

with the current calculation formula of similarity value, agents calculate greater

similarity to other agents with the same color than to the leader. Thus, by giving

preference to leader’s color, our agents were able to prefer the leader. Another as-

sumption was in the ability of agents to face the leader. We defined a blue square

shape around the leader (Figure 5.1). Each agent who reached this square box

would turn towards the leader. These assumptions enabled the agents to gather

around the leader.

We compared the SCT model with the individual knowledge model (i.e., each

agent makes decision independent of its peers) and the full knowledge model (i.e.,

each agent knows the position of the leader). In the individual knowledge model,

if an agent sees the leader, it moves toward it; otherwise, it searches for the leader

by a random walk which means that it moves straight until it is blocked and then

rotates at a random angle. In the full knowledge model, all agents know the loca-

tion of the leader and move toward it. In the SCT model, agents move according

to our algorithm. In these experiments, we controlled the crowd density and mea-

sured their clustering around the leader. Our hypothesis is that the SCT model will

be ranked somewhere in-between the random and full knowledge model. How-

ever, we can improve the results of the SCT model by inserting full knowledge
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agents. In section 5.2 we will examine the impact of such agents on the SCT

model results.

5.1 Gathering results

We first evaluated the SCT model in accounting for the gathering behavior. In

particular, we wanted to evaluate whether the SCT model agents would be able

to find the target location without previous information about it. We believed that

those agents closest to the leader and able to see it would “pull” the others. Thus,

eventually most of SCT model agents would find the gathering location, but not

as quickly as it could be when knowing that location in advance. Therefore, our

hypothesis was that the SCT model would be ranked somewhere in-between the

individual knowledge model and the full knowledge model.

In this experiment all agents had the same color except for the leader. We

placed the leader in the middle of the terrain and all the other agents were initial-

ized with a random position and with random direction. We limited the agents’

field of view in a way that only the agents closest to the leader were able to see

it. The sample population comprised 350 agents. In this experiment, agents used

comparison all the time, and not just when stuck.Smax was set at 7 (which means

that there was no such thing as too similar), andSmin was set at 2 (which means

that agents that differed only in distance were not considered similar). Each trial

was executed for 2000 cycles.

Figure 5.3 shows the screen shots of gathering experiment results. Figures

show the initial positions of the agents in one of the trials (5.3(a)), their positions

after moving 2000 cycles using the individual knowledge model (5.3(b)), their

positions after 2000 cycles using the SCT model (5.3(c)), and their positions after

2000 cycles using the full knowledge model (5.3(d)). The figures show that social

comparison model agents are able to gather around a target location.

Figure 5.4 summarizes the measurement results of the models. The X-axis

corresponds to the cycle number (1–2000) and the Y-axis corresponds to mean

distance between all agents and the leader in that cycle. Each data-point is an

average over 10 trials.

The results clearly demonstrate that the SCT model results lie in-between the
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(a) Initial positions.

(b) Individual choice model

(c) SCT model

(d) Leader know model

Figure 5.3:Screen shots, Gathering behavior.
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Figure 5.4:Gathering results

individual and the full knowledge model. In the full knowledge model, the gath-

ering rate is faster, as agents quickly converge to the minimum distance, which

remains stable. In the SCT model, the gathering rate is slower, as agents converge

more gradually, but eventually get close to the minimum distance.
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5.2 The effects of objective knowledge

The hypothesis underlying this experiment is that social comparison process can

compensate for agent’s lack of objective knowledge. According to Festinger: "To

the extent that objective, non-social means are not available, people evaluate their

opinions and abilities by comparison respectively with the opinions and abilities of

others". Thus, as social psychology predicts, in some sense, the social comparison

process may be considered a replacement for objective knowledge. In this section

we show that this is true (at least in this domain) by showing that the gathering

behavior of a population that is composed of relatively small percentage of agents

that know the target location, and others that use SCT, is essentially equivalent to

that of a population composed strictly of full-knowledge agents.

In this experiment, we evaluated whether we could improve the SCT model

results. We wanted to explore whether we could increase the SCT model gather-

ing convergence rate to the full knowledge model results. Thus, we added the full

knowledge agents to the population of the SCT model agents. The full knowledge

agents knew the position of the leader and moved towards it from the beginning of

simulation, while our agents used the SCT model to find the leader. Our hypothe-

sis was that by using social comparison in a population with agents who know the

position of the leader, there would be improvement in the SCT model results.

To examine this hypothesis, we carried out experiments where a population

of 350 agents contained different numbers of full knowledge agents. We experi-

mented with 10, 20, 40, 60 and 80 numbers of such agents. All agents (except the

leader) had the same color; therefore, the SCT model agents did not know which

of the agents were full knowledge agents. The SCT model agents used social

comparison all the time, and not just when stuck.Smax was set at 7 andSmin was

set at 2. Each trial was executed for 2000 cycles.

Figure 5.5 shows the experiment results for the SCT model with a different

number of full knowledge agents. The X-axis corresponds to the cycle number

(1–2000) and the Y-axis corresponds to the mean distance between all agents and

the leader in that cycle. Each data-point is an average over 10 trials.

The results clearly demonstrate that an increased number of full knowledge

agents causes the gathering to more quickly converge to the minimum distance.
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Figure 5.5:SCT model improvement results

Full knowledge model results Correlation Coefficient
SCT with #10 full knowledge 0.689188815
SCT with #20 full knowledge 0.822569564
SCT with #40 full knowledge 0.918956756
SCT with #60 full knowledge 0.975423219
SCT with #80 full knowledge 0.984862296

Table 5.1:Correlation Coefficient results between full knowledge model and
Social Comparison model with different number of full knowledge agents.

To explore whether and how strongly the gathering rate of the compared models

are related, we calculated the correlation between them. Correlation coefficients

were calculated between the full knowledge model and each of the SCT model

results.

Table 5.1 summarized the correlation coefficient results. The results clearly

demonstrate that with an increased number of full knowledge agents, the SCT

model has a stronger relation to the full knowledge model. Moreover, there is a

very strong correlation at 40 full knowledge agents number. Thus, if in popula-

tion of 350 agents there will be only 40 full knowledge agents, the SCT model

simulated behavior will be similar to the full knowledge model behavior.
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Chapter 6

When is the SCT Process Triggered?

One of the open questions that we coped with in this thesis, is when should an

agent trigger the social comparison process. Put differently, this is a question of

implementing the SCT process at the agent architecture level.

In this section, we propose two approaches for such implementation. The first

approach more directly follows Festinger’s Social Comparison theory. Accord-

ing to Festinger, the SCT process is a response to uncertainty (“lack of objective

means to evaluate opinions”). However, an alternative approach is to view the

SCT process as an on-going process at the architecture level. Such a view re-

quires that agent will be monitoring other agents all the time, and is thus more

computationally expensive. It also seems to contrast with Festinger’s theory. We

will explore these approaches in the context of crowd behavior simulations. We

conducted a set of experiments that will show the preference of one approach over

the other. In particular, we show that the second view is correct.

It may appear easy to dismiss the implementation question as insignificant.

However, the implementation choice carries significant implication: As SCT pro-

cesses inherently rely on knowing about the behavior of others, the implementa-

tion question raises a more fundamental question about where modeling of others

(e.g., using plan recognition) occurs in cognition: Is it a problem-solving activity,

or is it carried out all the time, at an architectural level.
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6.1 SCT as a Problem-Solving Activity

According to Festinger, people use social comparison when they have a lack of

knowledge to make their decisions. Thus one way of implementing the SCT pro-

cess in an architecture level is as a response to an uncertainty: When an agent is at

an uncertain state, it may call on a comparison process that will be used to assess

similarity and propose actions.

We thus may treat the social comparison theory as a new kind of uncertainty-

resolution method. Unlike previous uncertainty-resolution (problem-solving) tech-

niques, in which the agent focuses on using its own resources, here the agent uses

knowledge of others as a basis for resolving the uncertainty.

We believe that treating of social comparison processes as generic uncertainty-

resolution methods raise novel questions as to the role of social reasoning in cogni-

tive architectures. Most cognitive architectures do not commit to social processes

being a part of the architecture. Instead, most social reasoning is done by manip-

ulating knowledge and beliefs as part of a task. This view is quite common in

robotics and agent literature, which often treats reasoning about multiple agents

as a process that is carried out at a higher, task-dependent, level of reasoning.

If, however, the continuous-monitoring view of social comparison is correct,

then this implies that cognitive architectures must somehow specialize to cover

rudimentary social reasoning at an architectural level. In particular, for social

comparison processes to be possible, the architecture itself must distinguish be-

tween inputs that describe other agents from those that describe objects or features

in the environment. Without such a distinction, any reasoning will necessarily be

limited to where prior knowledge distinguishes the agents from other knowledge.

6.2 SCT as an On-Going process

Hakmiller [12] and Singer [28] expand Festinger’s theory about when people

use social comparison by adding another case. According to their theory peo-

ple tend to confirm or reassure that their actions or beliefs are the correct ones.

For this confirmation they use social comparison and such comparison is called

constructed comparison. According to this approach people tend to use social
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comparison in parallel to their decision making process.

Thus, an alternative is to view the SCT as an on-going process, at an architec-

tural levelin parallel to any problem-solving activity. Whereas normally, actions

are proposed (and selected) by cognitive architecture based on their suitability for

a current goal (e.g., through means-end analysis), in our agent actions were also

proposed based on their suitability for SCT. In other words, agent would consider

actions that advance it towards its goal. In our implementation, it would also

consider actions that seek to minimize perceived differences to other agents.

This may appear to contradict Festinger’s theory that social comparison comes

into play only when people are in an uncertain state. However, this is not the case.

By preferring the SCT-proposed actions only when no task-oriented actions are

available (i.e., in an uncertain state), one gets the behavior predicted by Festinger’s

theory. Further exploration of this issue is beyond the scope of this thesis.

6.3 Comparison of these approaches in regard to

crowd behavior modeling.

In the following section, we argue that implementation of SCT as an on-going

process is more suitable for modeling crowd behavior than SCT as a problem-

solving activity process approach. We conducted a set of experiments to evaluate

which of these two approaches is more applicable in the context of crowd behavior

simulations. We examined these approaches in reference to pedestrian grouping

behavior and to gathering behavior.

We used the same experiment framework for pedestrian grouping behavior

as described in section 4.3 and for gathering behavior as described in section 5.

In these experiments we compare between two types of SCT agents: the SCT-

Problem-Solving agent and the SCT-On-Going agent. These agents have the same

feature set and perform the SCT process in the same way as described previously

in Chapters 4.3 and 5. However, the main difference between them is inwhenthe

SCT process is activated. While in a SCT-Problem-Solving agent the SCT process

is activated when an agent is in an uncertain state, in a SCT-On-Going agent the

SCT process is activated all the time.
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SCT-On-Going approach SCT-Problem-Solving approach
87.4 167.3

Table 6.1: Grouping measurements of SCT-On-Going approach and SCT-
Problem-Solving approach. Lower values indicate improved grouping.

The question, what is an uncertain state for an agent is open and broad. We

leave the discussion about different approaches in that field outside of this the-

sis. In our implementation of modeling different types of movements (pedestrian

and gathering movement), the SCT-Problem-Solving agent initially follows a set

direction which is straight. If forward movement is blocked, the agent will be

considered to be in an uncertain state where it has to choose between alternative

directions. In this state the SCT process will be activated and the agent will choose

the lane based on the SCT algorithm.

Another open question that we also leave outside this thesis, is when an agent

should ignore social comparison proposed actions and prefer the actions that pro-

mote it to its current goal. In the implementation of gathering behavior, the SCT-

On-Going agent prefers the goal oriented actions (move toward the leader) when it

sees the leader, in other cases the agent prefers the SCT actions. In the implemen-

tation of grouping pedestrian behavior, the SCT-On-Going agent always prefers

the SCT actions.

Figure 6.1 shows pedestrian grouping behavior results. Figures show the ini-

tial positions of the agents in one of the trials 6.1(a), their positions after moving

5000 cycles using the SCT-On-Going approach 6.1(b) and their positions after

5000 cycles using the SCT-Problem-Solving approach 6.1(c). The figures show

that the SCT-On-Going approach accounts for grouping behavior while the SCT-

Problem-Solving approach provides behavior similar to the individual model (see

section 4.3).

We use hierarchical social entropy for measuring the grouping behavior (see

Chapter 4.3). Table 6.1 shows the measurement results for the SCT-On-Going

approach and for the SCT-Problem-Solving approach. We experimented with

population that compose from 5 different colors. The table shows that the SCT-

On-Going approach provides improved grouping compared to the SCT-Problem-

Solving approach.
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(a) Initial random positions.

 
(b) After 5000 cycles, SCT-On-Going approach.

(c) After 5000 cycles, SCT-Problem-Solving approach.

Figure 6.1:Screen shots, Comparison of Implementation approaches in re-
gard to Grouped Pedestrian Movement.

We now present the gathering behavior results. Figure 6.2 shows the screen

shots of the gathering experiments. The figures show the initial positions of the

agents in one of the trials 6.2(a), their positions after moving 5000 cycles us-

ing SCT-On-Going approach 6.2(b) and their positions after 5000 cycles using

SCT-Problem-Solving approach 6.2(c). Again, the figures show that the SCT-

On-Going approach is accounting for better gathering behavior than the SCT-

Problem-Solving approach. However, as shown in the pictures, the SCT-Problem-

Solving approach causes agents to divide into small separate clusters that move

around the leader and not necessarily are pulled towards it. As opposed to group-

ing behavior where the SCT-Problem-Solving approach provide similar results to

individual choice model, this provided behavior is not similar to individual choice

model behavior where only the closest agents to the leader are gather around it,
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while the others are scattered in the terrain (section 5).

Figure 6.3 summarized the measurement results of the models. The category

in the X-axis correspond to cycle number (1–2000) and the Y-axis correspond to

mean distance between all agents to the leader in that cycle.

The results demonstrate that the gathering rate of the SCT-On-Going approach

is better than the SCT-Problem-Solving approach. Moreover, in comparison to

individual choice model (section 5) the SCT-Problem-Solving approach provide

inferior results. The main reason for this distinction, is while the individual choice

agents are scattered equable in the terrain, the SCT-Problem-Solving agents are

gathered in small groups, distant from the leader.

We thus argue that implementation of SCT as an on-going process is more suit-

able for modeling crowd behavior than SCT as a problem-solving activity process

approach. Moreover, it is more general approach, in the term that it also compat-

ible with Festinger’s theory. We thus advocate using this approach in modeling

crowd behaviors.
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(a) Initial random positions.

(b) After 5000 cycles, SCT-On-Going approach.

(c) After 5000 cycles, SCT-Problem-Solving ap-
proach

Figure 6.2:Screen shots, Comparison of Implementation approaches in re-
gard to Gathering behavior.
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Figure 6.3:Gathering results of SCT-On-Going approach and SCT-Problem-
Solving approach
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Chapter 7

Implementations of SCT in Soar

We implemented SCT in the Soar cognitive architecture [23]. Soar was connected

to the GameBots virtual environment [19]. Here, multiple agents, each controlled

by a separate Soar process (each executing SCT) can interact with each other in a

dynamic, complex, 3D virtual world (see Figure 7.1).

Figure 7.1:Soar agents in the GameBots environment. Each agent has limited
field of view and range, and may move about and turn.

A detailed discussion of Soar’s role as a cognitive architecture in implement-

ing SCT is beyond the scope of this thesis. We provide a very brief overview
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here, and refer the interested reader to [23, 29] for additional details. Soar has two

components: a graph-structured working memory, and a set of user-defined pro-

duction rules that test and modify this memory. Efficient algorithms maintain the

working memory by executing rules that match existing contents. All the agent’s

knowledge, sensor readings, and decisions are recorded in the working memory.

Soar operates in a classic sense-think-act cycle, which includes a decision phase

in which all relevant knowledge is brought to bear to propose, and then select,

anoperator, that will then carry out deliberate mental (and sometimes physical)

actions. Once the operator finishes its actions, it is automatically de-selected (ter-

minated), and the cycle repeats. Unlike simple production rules, whose effects

on working memory are temporary, operator-induced actions on working memory

(and in turn, on physical actions) are persistent, even after the operator has been

de-selected. Overall, a Soar agent’s behavior is the result of the sequential selec-

tion of operators, each performing an action on the environment and/or internal

memory.

In section 6 we described two approaches for implementation of the SCT pro-

cess in an architectural level. According to the first approach the SCT process is

implemented as a response to an uncertainty. However, an alternative approach

is to view the SCT process as an always-on process at the architecture level. Al-

though we claimed that implementation of the SCT as an always-on process is

more suitable for modeling crowd behavior, the SCT as a problem-solving activ-

ity process provide a novel approach for uncertainty-resolution techniques. Thus,

in this section we present the implementation of both approaches in Soar.

7.1 Implementation of the SCT as Problem-Solving

Activity in Soar

A key novelty in Soar is that it automatically recognizes situations in which the

decision-phases is stumped, either because no operator is available for selection

(state no-change impasse), or because conflicting alternatives are proposed (oper-

ator tie impasse). When impasses are detected, a subgoal is automatically created

to resolve it. Thus, Social comparison theory as described by Festinger, seems to
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naturally fit Soar’s impasse-driven operation. In particular, Festinger describes the

trigger to using comparison as a situation in which people are unable to evaluate

their opinions and capabilities, which seems to match an impasse situation.

We argued in 6.1 that SCT implementation as Problem-Solving Activity pro-

cess may treat the social comparison theory as a new kind of uncertainty-resolution

method. Thus, we can treat the SCT process as an alternative method for impasse-

resolution (problem-solving) techniques. Our goal in this section is to determine

a general way to describe social comparison processes in Soar, in such a way that

they can be used for solving a wide variety of problems.

A snapshot from a log showing Soar using SCT implementation as Problem-

Solving Activity process (here, to decide on movement) is shown below. Soar’s

decision cycles are denoted by numbers before colons. In the first and second de-

cision cycles, operators calledinit andexplore-decision, respectively, are selected

by Soar. But then, more than 20 different instantiations of an operator called

elaborate-targetare proposed by the system; Soar is faced with the task of choos-

ing one among them for execution. Since it cannot decide, an operator-tie impasse

is declared; see the line marked

3: ==> S: S3 (operator tie)

This triggers our social comparison process, which is carried out, in sequence,

by the following operators: (i)sct-init, which sets up the new state, and copies

relevant information. (ii)sct-add-entities, which copies information about other

agents for use in ranking operators.rank-itemthen calculates a rank for all pro-

posed operators, based on associated agents and their own choices. Finallyselect-

itemselects the highest-ranking operator and makes the decision. Indeed the last

decision cycle (#8 in the log) shows a specific instance of theelaborate-targetwas

chosen.

1: O: O2 (init)

root is active ->proposed child : explore-decision ->by : root

2: O: O4 (explore-decision)

->proposed child : elaborate-target ->by : explore-decision

->proposed child : elaborate-target ->by : explore-decision
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[ . . . . . . . . . . . . . . 19 additional proposals for elaborate-target . . . . . . . . . . . . . . ]

->proposed child : elaborate-target ->by : explore-decision

3: ==>S: S3 (operator tie)

4: O: O27 (sct-init)

5: O: O28 (sct-add-entities)

6: O: O51 (rank-item)

7: O: O68 (select-item)

SCT Done. Chose O21 Name: elaborate-target

8: O: O21 (elaborate-target)

elaborate-target is active

[ . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Soar continues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ]

We propose to use social comparison processes as generic impasse-resolution

methods, that treat social reasoning as a problem-solving method.

7.2 Implementation of the SCT as an always-on pro-

cess in Soar

A different way of treating SCT process as described in section 6.2 is as on-going

process at the architecture level that activated in parallel to problem-solving activ-

ity. Thus, SCT was implemented as secondary parallel thread within Soar (Figure

7.2). At every cycle, operators are proposed (and selected) by Soar based on their

suitability for a current goal (e.g., through means-end analysis), and also based

on their suitability for SCT. Thus SCT-proposed operators compete with the task-

oriented operators for control of the agent. By setting Soar’s decision preferences

to prefer the SCT-proposed operators, we get a very social agent. Conversely, by

preferring the task-oriented operators, we get an individual choice agent which

makes its decisions independently of its peers.

The SCT thread proposed operators by following the algorithm described pre-

viously in 3, though in a way that is adopted for Soar’s decision cycle: At every
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Sensor Input

Propose
Task Operators

Select
Operator

Execute
Operator

Sense

Act

Think

(a) The normal Soar sense-think-act
decision cycle.

Sensor Input

Propose
Task Operators

Select
Operator

Execute
Operator

Sense

Act

Think

Propose
Operators to Minimize

Differences

(b) Modified Soar decision-cycle. SCT process high-
lighted.

Figure 7.2:The Soar sense-think-act decision cycle, SCT process highlighted.

cycle, for each observed agent and for each difference, the SCT process would

propose an operator that would minimize the difference. Then, a set of preference

rules is triggered that ranks the proposals based on feature weight. Additional

rules prefer the most similar agent (that is still not sufficiently similar). Thus at

the end, only one SCT operator is supported.

Here an addition to the SCT model became necessary. Suppose an agentX

decided to turn towards the same angle as an agentY that is next to it. Due to the

limited field-of-view ofX, it would lose track ofY once it makes the turn. From

that point on, it could no longer keep track ofY , to minimize additional differ-

ences. This would cause it to become overly reactive, turning about immediately

to seekY again, or to select a different operator altogether (now thatY could no

longer be imitated).

We thus found it necessary to utilize two mechanisms: (i) a memory mech-

anism that keeps track of the whereabouts of agents, once seen; and (ii) an ex-

ploration mechanism that occasionally would turn towards remembered agents, to
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provide an update on their state (for the purpose of comparison). Both of these

mechanisms (memory and exploration) are of course present in many cognitive

architectures, and are not necessarily linked to SCT. We thus leave discussion of

such mechanisms outside of this thesis.

We argued in section 6.3 that this implementation of SCT is better. It is com-

patible with Festinger’s theory, and better accounts for pedestrian behavior in low-

density areas. Thus, we will using this approach in Soar-based implementations

of crowd modeling.
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Chapter 8

Modeling Imitational Behavior

An attractive feature of social comparison is its hypothesized prevalence in human

group behavior, i.e., its generality across different behaviors. Indeed, we believe

that the SCT model we present in this thesis is sufficiently general to account for

a wide variety of group behaviors. This is in contrast to many existing computa-

tional models, that typically focus on specific tasks.

This section provides additional evidence for such generality by describing the

application of the SCT model to the problem of generating imitational behaviors

in loosely-coupled groups. Unlike individual imitation, where one agent imitates

a role model, crowd imitational behavior spreads across a group of individuals

who dynamically select role models for imitation, from the level of observable

actions to the level of unobservable internal mental attitudes (e.g., goals). Here,

imitation occurs more loosely, as the role models do not necessarily intend to play

their role, and indeed may not even know that they are being imitated. Also, the

imitators potentially switch their role-model targets from one moment to the next.

Psychology literature describes such imitational behavior as one of the keystones

of crowd behaviors [21].

In order to simulate imitational behavior we used Soar cognitive architecture.

The SCT process was implemented as an always-on process in Soar (for further in-

formation, see section 7.2). We used position and direction as the agents’ features

set. For each observed agent and for every difference found, the SCT process pro-

poses a corrective operators to be performed in order to minimize the difference

58



in selected feature. In this task the corrective operators were ’move-to’ (minimiz-

ing distance to the observed agent, correcting position differences) and ’turn-to’

(imitating angle of the observed agent).

In addition to the proposed SCT operators, Soar also proposes operators based

on their suitability for the current goal, and based on an exploration mechanism

which proposes operators seeking new information. In this task, goal operators

were turn-to (a random angle); the exploration mechanism operators turned to-

wards previously seen agents.

We used Soar preference rules to rank the features weights such that the po-

sition feature gets higher priority than direction. This means that a closest agent

is consider to be more similar, however the chosen feature for correction is direc-

tion. TheSmax value was unbounded, which means that there is no such thing

as too similar. In our case Soar can propose corrective operator with value equal

to zero if there is no correction to make with respect to the observed agent. We

used additional Soar preference rules to give higher priority to exploration mecha-

nism operators than to goal operators. Thus, each agent prefers the SCT operators

(turn to) and in the case when there is no seen agents (i.e.. there is no proposed

SCT turn-to operator) an agent will prefer the exploration mechanism operators,

and only afterwards the goal operators. The resulting simulated behavior has the

agents standing in their initial locations, turning to some direction or do nothing.

8.1 Evaluation of imitational behavior

We conducted experiments to evaluate whether SCT can indeed generalize to ac-

count for imitational behavior in groups. Unlike the pedestrian movement do-

main, where clear measures are available for objective measurement of a success

of a model (e.g., flow, lane changes), imitational behavior does not have clear

standards of evaluation.

We propose a method for evaluation of imitational behavior. We propose a

questionnaire composed from general questions and specific tasks related ques-

tions. The general questions can be used as a common method for evaluation

of all kinds of imitational behaviors. We rely on experiments with human sub-

jects, which judged the human crowd behavior and the resulting SCT behavior
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in comparison to completely individual behavior (i.e., arbitrary decisions by each

agent, independently of its peers), and to completely synchronized behavior (i.e.,

all agents act in complete unison).

The first hypothesis underlying the experiments was that groups controlled by

SCT would generate behavior that would be ranked somewhere in-between the in-

dividual and perfect-coordination models, i.e., that SCT would generate behavior

that would be perceived as coordinated, but not perfectly so. Another hypothesis

is that human crowd behavior would also be ranked somewhere in-between the

individual and perfect-coordinated behaviors.

To examine the first hypothesis, we created three screen-capture movies of 11

Soar agents in action. All movies were shot from the same point of view, and

showed the agents in the same environment. In all screen-capture movies there is

one blue agent that stands in a front and turn up to 90◦ left or right. All others are

red agents that acted according to one of the models.

In one movie (individual), the red agents acted completely independently of

each other, randomly choosing an angle and turning to it. In another (unison), the

red agents acted in almost perfect coordination, turning towards the same angle

as the blue agent almost instantaneously (small timing differences resulting from

asynchronous responses of the simulated environment). Finally, in theSCTmovie,

the red agents acted according to our model as described above.

These experiments were carried out using 12 subjects (ages: 18–40, mean:

28; male: 6; additional 4 subjects dropped due to technical reasons). Each subject

was given a brief description of the appearance of the environment and agents,

sometimes aided by a snapshot from a movie (e.g., as in Figure 7.1). The subjects

were told that the purpose of the experiment was to evaluate the use of perception

models embedded in the agents; that there was a red dot—visible to the agents

but not to the subject—that moves about on the walls surrounding the group. The

agents’ goal is to individually locate this dot, and then track it in place by turning

around. The purpose of the cover story was to focus the attention of the subjects

away from group behavior and imitation, so as to not bias the results. After the

description, the movies were shown to the subject.

After each movie, the subjects were asked to fill a short questionnaire (de-

scribed below) based on what they saw. Each movie was shown only once. The
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order of presentation of movies randomly selected for each subject, to control for

learning and order effects. The questionnaire included the following questions:

1. If there is only one red dot in the room, to what degree did all agents see it?

(1 - nobody saw the red dot; 6 - all agents saw it)

2. To what degree were the movements of the agents random? (1 - not random

at all; 6 - very random)

3. To what degree was there cooperation between the agents? (1 - no coopera-

tion at all; 6 - full cooperation)

4. To what degree was there agreement between the agents? (1 - no agreement

at all; 6 - full agreement)

5. To what degree were the agents coordinated in terms of the direction of their

movements? (1 -no coordination at all; 6 - fully coordinated)

6. How quickly did the agents find the red dot? (1 - dot not found at all; 6 -

immediately found)

7. To what degree were the agents related to each other? (1 - no relation at all;

6 - tight relation)

8. Do you see any leaders? If so, how many? (1-11) (1- one leader; 11 - all

agents are leaders, i.e., no leader).

In this experiment, the subjects were asked to grade the movies on an ordinal

scale of 1–6, with 1 being a low score (typically associated with more individual

behavior), and 6 being a high score (typically associated with perfect unison). In

order to keep consistency in presentation of results, the scale of second question

(Non-Random) was reversed. The results of the last question (Number of leaders)

are presented separately due to inconsistency in scale with other questions.
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8.1.1 Agents results

In general, the responses to the questions in this experiment have placed SCT be-

tween the individual and unison models. Results are summarized in Figure 8.1(a)

and 8.1(b). The questions in Figure 8.1(a) are associated with agents performance

on a given task. In presented questionnaire the number of questions are 1, 3, 4 and

6. Figure 8.1(b) refer to more general questions (i.e.. same questions that were

used in human crowd movie). In questionnaire the relevant number of questions

are 2, 5, and 7. The categories in the X-axis correspond to questions given to the

subjects. The Y-axis measures the median result. Each bar correspond to com-

pared model and as explained above we compare SCT model to Individual and

Unison models.

The results clearly demonstrate that the SCT model lies in between the individ-

ual and perfect-unison model. While in some questions it appears to be somewhat

closer to the individual model, it is significantly different from it at theα = 0.05

significance level (t-test, one-tailed).

Figure 8.2 shows the results for the question on the number of leaders. The

median result for the individual was 11 (i.e., every agent is a leader, or in other

words, no leader). For the unison model, the median result was 1. For the SCT

model, the median result was 3. In this question the SCT model result is very close

to the Unison model. According to t-test (one-tailed) the SCT model significantly

different than the Individual modelp = 0.02. However, in comparison to Unison

model there is no significance found (p = 0.3).

When we asked the subjects to qualitatively discuss their answer to these ques-

tions, many subjects reported on feeling that agents in the movie were organized

in several subgroups, that were internally coherent, but not coordinated with the

others.

8.1.2 Snapshots Experiment

The following section provides another examination of our first hypothesis that

groups controlled by SCT would be ranked somewhere in-between the individual

and perfect-coordination models. However, as opposed to screen-capture movies

where the subject answered the questionnaire after seing each movie only once,
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(a)

(b)

Figure 8.1:Results of questionnaire on agents performance.

in this experiment the subjects answered the questionnaire while watching the

snapshot.

We took three snapshots from each movie. The snapshots were taken at same

time slot from the beginning, middle and the end of the movies. After filling the

screen-capture movies questionnaire, the snapshots from the movies were shown

to the subjects. After each snapshot, the subjects were asked to fill a different

questionnaire than in screen-capture movies. Like in screen-capture movies, the

order of presentation was randomly selected for each subject, to control for learn-

ing and ordering effects.

The question presented to the subjects after watching each snapshot was: If
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Figure 8.2:Number of leaders in screen-capture movies

there can be more than one red dot in the room and each agent look at it, how

many red dots in the room? The subjects were asked to grade each snapshot on

an ordinal scale of 1–11 with 1 being a low result (i.e., all agents look at the same

red dot) and 11 being a high result (i.e., the number of red dots as the number of

agents meaning all agents look at different dots).

The results of this experiment are summarized in Figure 8.3. Again the cat-

egories in the X-axis correspond to question given to the subjects. The Y-axis

measures the average of median results that belong to same model.

Again the results demonstrate that the SCT model lies in between the indi-

vidual and perfect-unison model and it significantly different from the individual

model (p = 0.011, t-test, one-tailed) and from perfect-unison model (p = 0.012,

t-test, one-tailed).

8.1.3 Human crowd experiment

Another hypothesis underlying the experiments is that human crowd behavior

would also be ranked somewhere in-between the individual and unison models.

To examine this, we search for a human crowd movie where individuals perform

the same action as in simulated agents movies. We used a news clip movie where

gathered people are standing and waiting for some event to occur, and the only
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Figure 8.3:Snapshots results.

action they perform was turning to some direction.

This experiment was carried out using 12 subjects different than in the screen-

capture movies experiments. Each subject, after viewing a human crowd movie

(Figure 8.1.3) was asked to fill the same questionnaire as in previous experiments.

However, since in human crowd movie there was no cover story about red dot,

there were some irrelevant questions that were dropped out. The remaining ques-

tions are more general and not tied to specific task.

Figure 8.4:Human crowd - clip movie.
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Results are summarized in Figure 8.5. As in previous results, the categories in

the X-axis correspond to questions given to the subjects and the Y-axis measures

the median result.

Figure 8.5:Human crowd results - general questions.

We compare the human crowd results to the individual and perfect-unison

models results. It appears to be significantly different from individual model in

all questions (p = 0.000016, p = 0.000033, andp = 0.04, respectively; t-test,

one-tailed). However, in comparison to perfect-unison model, the results of the

coordination and non-random questions are significantly different(p = 0.0034,

andp = 0.0003 correspondingly) significance level (t-test, one-tailed). But, in

the results of the relationship question there is no significant found (p = 0.44).

Therefore, the human crowd results also lies between the individual and perfect-

unison model. However, in the relationship question results appears to be closer

to the perfect-unison model.

In response to the question “Do you see any leaders? If so, how many?”, the

median result in human crowd movie was 1.5. It appears to be significantly differ-

ent from individual model (p = 0.001, t-test, one-tailed) but not in comparison to

perfect-unison (p = 0.374). When the subjects were asked to qualitative discuss

their answer to this question, many subjects reported on feeling that they don’t see

any leader, however they sure that there is one since the crowd is waiting for some-
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thing or someone. However, when they asked to refer to only to people seen in the

movie, the answer was that there were several subgroups in seen crowd. There-

fore, we think that the question that should be asked in watching such movies:

“Are there any subgroups? If so, how many?”.
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Chapter 9

Summary and Future Work

This thesis presented a model proscribing crowd behavior, inspired by Festinger’s

social comparison theory [10]. The model intuitively matches many of the char-

acteristic observations made of human crowd behavior, and was shown to cover

several distinct phenomena reported in the literature. Though there is lack of ob-

jective data against-which the model can evaluated, the results are promising and

seem to match intuitions as to observed behavior.

We also presented implementation of the model for pedestrian movement ex-

periments, gathering and imitational behavior. We describe two different ways of

implementations the SCT process in an architectural level. Based on the results

from experiments, we argue that implementation of SCT as an on-going process

is more suitable for modeling crowd behavior than SCT as a problem-solving ac-

tivity process approach.

In our future work we plan to extend the SCT model to include the repelling

forces. Thus, each agent should not only be attracted to the similar but also should

avoid the dissimilar. With our current SCT model the agent moves only through

forces of attraction. Therefore, there are some collective behaviors that are dif-

ficult to simulate. For example, blended crowd behaviors. In order to evaluate

this, we plan to generate a simulation of calm demonstration in which participants

respond to threatening events (such as explosions, military/police presence, etc.).

The crowd will exhibit different behaviors during different phases of simulation

and with the ability to move independently and transparently from one behavior to
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another. By definition, this also includes behavior blending, where different parts

of the crowd exhibit different behaviors simultaneously.

We also plan to explore the expression of leadership in social comparison the-

ory, and expand our model to simulate collective behaviors with the influence of

leaders. Our main goal that with SCT model we will be able to simulate crowd

behaviors with and without leadership influence.

With current SCT model, agents behave very reactively since the only fea-

tures for comparison is external and instantaneous one. For example, an agent is

able to compare the location of other agent (instantaneous feature) and not able to

compare the intended destination of the agent. Thus, we plan to integrate inten-

tion recognition model into a social comparison model in order to achieve more

complex crowd behaviors.

SCT model require a high degree of computational complexity since each

agent performs SCT with each seen neighbor, in every cycle of simulation. For

example: suppose we haven agents, each agent seesk neighbors and simulation

duration isc cycles. The simulation complexity is:nkc . We plan to reduce this

computational complexity by reducing thek value (number of compared agents)

and then value (number of agents that perform comparison each cycle).

69



Bibliography

[1] N. Agmon and D. Peleg. Fault-tolerant gathering algorithms for autonomous

mobile robots.SIAM Journal on Computing (SICOMP), 36(1):56–89, 2006.

[2] F. H. Allport. Social Psychology. Boston: Houghton Mifflin, 1924.

[3] T. Balch.Behavioral Diversity in Learning Robot Teams. PhD thesis, Geor-

gia Institute of Technology, 1998.

[4] V. J. Blue and J. L. Adler. Cellular automata microsimulation of bidirectional

pedestrian flows.Transportation Research Record, pages 135–141, 2000.

[5] A. Braun, S. R. Musse, L. P. L. de Oliveira, and B. E. J. Bodmann. Model-

ing individual behaviors in crowd simulation. InComputer Animation and

Social Agents, pages 143–148, 2003.

[6] A. Braun, S. R. Musse, L. P. L. de Oliveira, and B. E. J. Bodmann. Modeling

individual behaviors in crowd simulation.casa, 00:143, 2003.

[7] M. Cieliebak, P. Flocchini, G. Prencipe, and N. Santoro. Solving the robots

gathering problem. In30th Int. Colloq. on Automata, Languages and Pro-

gramming, pages 1181–1196, 2003.

[8] M. Cieliebak and G. Prencipe. Gathering autonomous mobile robots. In

9th Int. Colloq. on Structural Information and Communication Complexity,

pages 57–72, 2002.

[9] W. Daamen and S. P. Hoogendoorn. Experimental research of pedestrian

walking behavior.Transportation Research Record, pages 20–30, 2003.

70



[10] L. Festinger. A theory of social comparison processes.Human Relations,

pages 117–140, 1954.

[11] S. Freud.Group Psychology and the Analysis of the Ego. Liveright Publish-

ing, 1951.

[12] K. L. Hakmiller. Threat as a determinant of downward comparison.Journal

of experimental social psychology, 2:32–39, 1966.

[13] D. Helbing. Boltzmann-like and boltzmann-fokker-planck equations as a

foundation of behavioral models.Physica A, 196:546–573, 1993.

[14] D. Helbing and P. Molnar. Self-organization phenomena in pedestrian

crowds. In F. Schweitzer, editor,Self-organization of Complex Struc-

tures: From Individual to Collective Dynamics, pages 569–577. Gordon and

Breach, London, 1997.

[15] D. Helbing, P. Molnar, I. J. Farkas, and K. Bolay. Self-organizing pedestrian

movement.Environment and Planning B, 28:361–384, 2001.

[16] D. Helbing and T. Vicsek. Optimal self-organization .New Journal of

Physics, 1:13–+, 1999.

[17] L. F. Henderson. The statistics of crowd fluids.Nature, 229:381–383, 1971.

[18] L. F. Henderson. On the fluid mechanics of human crowd motion.Trans-

portation research, 8:505–515, 1974.

[19] G. A. Kaminka, M. M. Veloso, S. Schaffer, C. Sollitto, R. Adobbati, A. N.

Marshall, A. Scholer, and S. Tejada. GameBots: A flexible test bed for mul-

tiagent team research.Communications of the ACM, 45(1):43–45, January

2002.

[20] T. Kretz. Pedestrian Traffic: Simulation and Experiments. PhD thesis, Uni-

versität Duisburg-Essen, 2007.

[21] G. Le Bon. The crowd: A study of the popular mind.Dunwoody, Ga., N.S.

Berg, 1968.

71



[22] M. J. Mataríc. Designing and understanding adaptive group behavior.Adap-

tive Behavior, 4(1):50–81, December 1995.

[23] A. Newell. Unified Theories of Cognition. Harvard University Press, Cam-

bridge, Massachusetts, 1990.

[24] T. Osaragi. Modeling of pedestrian behavior and its applications to spatial

evaluation. InAAMAS ’04: Proceedings of the Third International Joint

Conference on Autonomous Agents and Multiagent Systems, pages 836–843,

Washington, DC, USA, 2004. IEEE Computer Society.

[25] C. W. Reynolds. Flocks, herds and schools: A distributed behavioral model.

In Proceedings of the 14th annual conference on Computer graphics and

interactive techniques (SIGGRAPH-87), pages 25–34, New York, NY, USA,

1987. ACM Press.

[26] C. W. Reynolds. Steering behavior for autonomous character. InProceedings

of the Game Developers Conference, pages 763–782, 1999.

[27] S. J. Rymill and N. A. Dodgson. A psychologically-based simulation of

human behaviour. InTheory and Practice of Computer Graphics, pages

35–42. 2005.

[28] J. E. Singer. Social comparison: progress and issues.Journal of experimen-

tal social psychology, 2:103–110, 1966.

[29] Soar. http://sitemaker.umich.edu/soar/home/, 2006.

[30] D. Thalmann. The foundations to build a virtual human society. InProceed-

ings of Intelligent Virtual Actors (IVA-2001), pages 1–14. Springer-Verlag,

2001.

[31] P. C. Tissera, M. Printista, and M. L. Errecalde. Evacuation simulations

using cellular automata.Journal of Computer Science and Technology,

7(1):14–20, April 2007.

[32] M. C. Toyama, A. L. C. Bazzan, and R. da Silva. An agent-based simulation

of pedestrian dynamics: from lane formation to auditorium evacuation. In

72



AAMAS ’06: Proceedings of the fifth international joint conference on Au-

tonomous agents and multiagent systems, pages 108–110, New York, NY,

USA, 2006. ACM Press.

[33] X. Tu and D. Terzopoulos. Artificial fishes: physics, locomotion, perception,

behavior. InSIGGRAPH ’94: Proceedings of the 21st annual conference on

Computer graphics and interactive techniques, pages 43–50, New York, NY,

USA, 1994. ACM Press.

[34] U. Wilensky. NetLogo. Center for Connected Learning and Computer-Based

Modeling—Northwestern University; http://ccl.northwestern.edu/netlogo/,

1999.

[35] M. Wolff. Notes on the behaviour of pedestrians.In People in Places: The

Sociology of the Familiar, pages 35–48, 1973.

[36] S. Wright. Crowds and riots : a study in social organization. Beverly Hills,

Calif. : Sage Publications, 1978.

[37] K. Yamashita and A. Umemura. Lattice gas simulation of crowd behavior.

In Proceedings of the International Symposium on Micromechatronics and

Human Science, pages 343–348, 2003.

73


