
Of Ants and Elephants

Asaf Shiloni, Noa Agmon and Gal A. Kaminka
The MAVERICK Group

Computer Science Department
Bar Ilan University, Israel

{shilona,segaln,galk}@cs.biu.ac.il

ABSTRACT
Investigations of multi-robot systems often make implicit assump-
tions concerning the computational capabilities of the robots. De-
spite the lack of explicit attention to the computational capabilities
of robots, two computational classes of robots emerge as the focal
points of recent research: Robot Ants and robot Elephants. Ants
have poor memory and communication capabilities, but are able
to communicate using pheromones, in effect turning their work
area into a shared memory. By comparison, Elephants are com-
putationally stronger, have large memory, and are equipped with
strong sensing and communication capabilities. Unfortunately,
not much is known about the relation between the capabilities of
these models in terms of the tasks they can address. In this pa-
per, we present formal models of both Ants and Elephant, and in-
vestigate if one dominates the other. We present two algorithms:
AntEater, which allows Elephant robots to execute ant algorithms;
and ElephantGun, which converts elephant algorithms—specified
as Turing machines—into ant algorithms. By exploring the compu-
tational capabilities of these algorithms, we reach interesting pre-
liminary results regarding the computational power of both mod-
els.

1. INTRODUCTION
Investigations of multi-robot systems, from a computational per-

spective, often focus on algorithms for specific tasks and applica-
tions. Such algorithms make explicit their assumptions concerning
the sensing and actuation morphologies of the robots. However,
more often than not, assumptions as to the computational capabil-
ities of the robots are left implicit. They can be determined by
examining the requirements of the algorithms, and the basic set of
atomic actions they utilize.

Despite the lack of explicit attention to the computational capa-
bilities of robots, two computational classes of robots emerge as
the focal points of recent research: Robot ants and robot elephants.

Robot ants, somewhat popular in swarm robotics [6], are usually
memory-less (or have severe memory limitations) and have rela-
tively weak sensing abilities, if any [4, 18]. They usually have an
ability to communicate through the environment, by leaving behind
pheromones which essentially turn the environment into a shared
memory. Robot ants have been shown to be able to carry out im-
pressive robotic tasks, such as terrain coverage [4], area patrol [13],
and foraging [12].

Robot elephants seem—by comparison—significantly stronger
from a computational perspective. These have a large amount of

AAMAS 2008 Workshop on Formal Models and Methods for Multi-Robot
Systems, May 13 2008, Estoril, Portugal.

memory (as large as needed, for instance, to hold a full map of the
work area), and are equipped with strong sensing and communica-
tion machinery [2, 3].

However, not much is known about just what the limits of these
models are and respectively what problems they can and cannot
solve. Although the computational strength of Elephants were
never questionable, the strength of Ants, which emerges from im-
plicit communication and local interactions, is unknown. Thus, it
is crucial to understand what are the Ants’ limits of computational
ability, and how do they stand relative to the Elephants’ computa-
tional abilities.

In this paper, we present formal models of both Ants and Ele-
phant in the environment of a grid, and investigate if one domi-
nates the other, they are equivalent, or rather each has its own ad-
vantage over the other and thus, they are incomparable. We present
two algorithms: AntEater, which allows Elephant robots to exe-
cute ant algorithms; and ElephantGun, which converts elephant
algorithms—specified as Turing machines—into ant algorithms.
By exploring the computational capabilities of these algorithms, we
reach interesting preliminary results regarding the computational
power of both models.

2. BACKGROUND
Ant robots are usually described as memoryless or more formally

as finite state machines [17,18], i.e., having only a constant amount
of internal memory, the size of which is independent of the problem
size. Furthermore, they are described as having limited sensing ca-
pabilities [4] although in some of the work that considered simple
mobile robots, the assumption is that their sensation abilities are all
powerful in contrast to their weak computational abilities [1, 15].
Common to all previous work is the assumption that the Ants are
not able to use conventional planning methods [19]. Lastly, what
distinguishes the Ants from other simple mobile robots is the usage
of pheromones to communicate with each other. These pheromones
are basically pieces of information that can take any physical from
such as chemicals [12], heat [11], markings [4] etc., and are some-
times evaporative [11, 17].

Bruckstein and Wagner have shown algorithms for area coverage
by a swarm of Ants, using evaporative [17] and non-evaporative [8]
markings. While some of these pheromones are laid by the robots
themselves [8], others are a part of the given workspace [18]. They
considered simple robots with a bounded amount of memory [18,
20] for their model of ant robots. Their works and additional works
by Koenig et al. [5] produced upper bounds for the time it takes
to complete a single or a repeated coverage by a swarm of Ants.
However, non of the works above prove any concrete boundaries on
the Ant model abilities, regardless of the specific task they engage
in.

Several papers investigated classes of semi-synchronous [16]
and asynchronous [9,10] mobile robots that have all powerful sens-
ing abilities, such as taking a snapshot of the world, in contrast to
their weak memory functionality, no localization, and no sense of
direction. Some interesting boundaries to these robots’ abilities
were found, yet we do not know if those limits stand when these
robots are equipped with pheromones.

Unfortunately, model comparisons of robots had not been often
discussed. There is, indeed, an extensive theory of computation,
which includes a hierarchy of calculating machines from finite state
machines to Turing machines [14], but lacks the ability to model
machines with ongoing input. O’Kane and LaValle [7] produced a
model for comparing the power of robot based on sensory abilities,
but did not address computational and memory differences.

3. FORMAL ANTS AND ELEPHANTS
In this section, we provide formal definitions of the Ant and Ele-

phant models used throughout our work (Section 3.1). We then
compare between the computational power of the models, using
two algorithms. The first (Section 3.2) allows a multiple Elephants
to execute an algorithm for multiple ants. The second (Section 3.3)
considers a specific reverse case, where a single Ant executes the
algorithm of a single Elephant (under some restrictions).

3.1 Definitions
We define the Ant model as having a representative subset of

properties from the models portrayed above. The capabilities of
the Ant model are defined as follows:

Instruction set. Ants can:

• Move in all directions.

• Sense a limited radius around them

• Read and write arbitrary levels of multiple pheromone
types.

• Calculate any set of values - bounded by their compu-
tational power.

Memory. Ants are oblivious in the sense their memory is constant,
and is very limited compared to the size of the work area,
allowing them to remember only a constant number of moves
back.

Communications. Ants have an unlimited amount of pheromones,
which are essentially pieces of limited information that
can be left in space, read from, and be written to. The
pheromones do not evaporate by themselves.

Localization. Ants have no means of localization.

Anonymity. Ants are anonymous, and cannot identify each other.

Homogeneity. Ants are homogenous; they have the same capabil-
ities, and run the same algorithm.

Centralization. Ants work in a decentralized fashion.

We define the Elephant as obtaining the maximal abilities used
by known models. However, in order to focus the comparison be-
tween the Ant and the Elephant model on issues rather than sens-
ing (already handled by [7]), we assume that the Elephants have
the same sensing capabilities as the Ants. The Elephant model’s
capabilities are defined below. We use emphasized text to denote
differences with Ants:

Instruction set. They can move in all directions, sense the same
limited radius around them as the Ants.

Memory. They have unbounded memory.

Communication. They have reliable, instantaneous communica-
tions to all others.

Localization. They can localize themselves on a shared coordina-
tion system.

Anonymity. Elephants have distinct identities, and all know of
each other.

Homogeneity. They are homogenous in the sense that they have
the same capabilities and run the same algorithm.

Centralization. They work in a decentralized fashion.

In order to investigate an equivalence between the two above
models, we first define the measurement in which we compare the
two models. We define dominance similar to the definition in [7],
as follows:

DEFINITION 1. let AN and BM be models of N and M mobile
robots, respectively. Then:

• We say that AN dominates BM and notate it AN ¥ BM if
the computational ability of AN are at least as powerful as
those of BM .

• We say that AN is equivalent to BM and notate it AN ≡ BM

if AN ¥ BM and BM ¥ AN .

• We say that AN is incomparable to BM and notate it AN ./
BM if AN ¤ BM and BM ¤ AN .

3.2 The Anteater
In this section, we show that N Elephants computationally dom-

inate N Ants in the sense that N Elephants can simulate N Ants,
where N ≥ 1. In order to do that, we use an algorithm AntEater,
that is executed by the Elephant, and simulates the behavior of the
Ant. We prove that this algorithm transforms the Ants’ algorithm,
while keeping the characteristics of the original algorithm.

Algorithm 1 AntEater (Ant algorithm A, list of robots R)
1: Initialize map M large enough to contain the work area, with

current position from localization device.
2: Initialize pointer p to point to first instruction in A.
3: while A has not stopped do
4: if step in p is to write pheromone level l in location (x, y)

then
5: write l in M(x, y)
6: else if step in p is read pheromone level l from location

(x, y) then
7: read value l from M(x, y)
8: else if Step in p is sense location (x, y) then
9: Sense location (x, y) in space

10: else if Step in p is calculate values (z0, ..., zn) then
11: Simulate calculation of (z0, ..., zn)
12: Broadcast M to all r ∈ R
13: if step in p is move to (x, y) then
14: Move to location (x, y) in space
15: Update M with current position from localization device
16: Set p to point to next instruction in A

The underlying idea in AntEater is to execute exactly the same
movements as the ant algorithm A, but distribute the shared mem-
ory created by the use of pheromones. Whenever A writes a
pheromone value in the environment, AntEater writes in in the in-
ternal map kept by each elephant robot. And whenever A reads a
pheromone value, the map is accessed in memory to retrieve the
value stored. The elephant robots continuously communicate their
map information to each other, thus making sure that their maps
are identical—thus simulated pheromones written in one elephant
robot’s memory are readily available to all others for reading. We
formally show this in Theorem 1.

THEOREM 1. Procedure AntEater, if executed by an Elephant,
achieves the properties of the ant algorithm it is given. Specifically,
it guaranties the same a. Task completion, b. Time complexity, and
c. Robustness to failures

PROOF. Task completion: Assume that the solution for a given
problem is a collection of paths and that this collection is achieved
by the ant algorithm at a certain time. Therefore, since AntEater
performs the same movements as the original ant algorithm A and
simulates its calculations and pheromones in space, the Elephants
will perform the same collection of paths and thus, will solve the
given problem.
Time complexity: Let O(m) be the time complexity of the origi-
nal ant algorithm A, such that m is the number of steps taken by
the Ant. Since in every step AntEater is going over exactly the
step that would have been taken by A, its time complexity will
be O(mc), where c is the cost of broadcasting the robot’s map
and thus, is still a function of the number of robots. This can be
achieved because AntEater does not perform any extra actions per
step.
Robustness: AntEater preserves A’s original robustness, for they
eventually behave exactly the same. Lastly, as it emerges from line
3, AntEater assures termination in case the original ant algorithm
itself terminates.

We will use a coverage algorithm for ant robots called Mark-
Ant-Walk, proposed by Osherovich et. al. [8], in order to exemplify
the above theorem. The Mark-Ant-Walk algorithm is intended for
one or more memoryless robots who use pheromones as indirect
communication to perform a coverage task of an area. As adver-
tised, Mark-Ant-Walk guaranties full coverage of a continuous area
within n

˚
d
r

ˇ
+ 1 steps, where n is the number of cells in the do-

main, d is the diameter of the domain, and r is the radius of the
robot effector (although, the above algorithm does not know when
to stop). Also, it promises immunity to noise and robustness to
robot death: As long as at least one robot is alive, the area will be
complete.

The Mark-Ant-Walk algorithm is given below (Algorithm 2).
This algorithm is called continuously by each ant robots, with p
given as the current location (whose coordinates are unknown to the
robot). R(r, 2r, p) denotes the robot’s ability to sense pheromone
level at its current position p and in a closed ring of radii r and
2r around p. D(r, p) denotes the open disk radius r around the
robot in which it can set the pheromone level, and σ(a) denotes the
pheromone level at point a:

Therefore, if we run AntEater with Mark-Ant-Walk as an input
on Elephants with the same sensing capability yet with wireless
communication instead of the ability to read and write pheromones,
it will behave as follows: First, the Elephant will initialize a map
with its own location on it and keep updating that map all along
its run time from information it receives from other robots. This
can be done since Elephants have enough memory to create such a

Algorithm 2 Mark-Ant-Walk (current location p)
1: Let x ← argminq∈R(r,2r,p) σ(q)
2: if σ(p) ≤ σ(x) then
3: for all u ∈ D(r, p) do
4: σ(u) ← σ(x)+1 {We mark open disk of radius r around

p}
5: Move to x

map. Then, in each step the Elephant will move exactly as the Ant
would have, use its effector just as the Ant would have, but instead
of placing pheromones, it will update their value in its own map.
Also, instead of sensing for pheromones it will fetch the pheromone
level from its own map. Eventually, after completing a step, it will
broadcast the changes it made to the map to all other robots, in case
there are any.

Again, we analyze AntEater’s performance in the criteria of
time complexity, complete coverage, and robustness.

• Complete coverage: Since the original ant algorithms guar-
anties complete coverage, and since the AntEater algorithm
goes over each step originated by the ant algorithm, we can
infer that an Elephant with same dimensions and effector ca-
pabilities will achieve complete overage as well.

• Time complexity: Assuming robots with same dimensions
and effector capabilities, our AntEater algorithm guaranties
the same time complexity, because the Elephant is mov-
ing only when the original Ant was supposed to move.
Also, had the Mark-Ant-Walk algorithm have a stopping
point, AntEater would have stopped exactly then. Since
there are no additional actions, we can conclude that the
AntEater guaranties complete coverage also within at most
O(c(n

˚
d
r

ˇ
+ 1)), where c is again the cost in time of broad-

casting the map to all the other robots.

• Robustness: According to Osherovich et al. [8], the Mark-
Ant-Walk algorithm is first and foremost an algorithm for a
single Ant, thus if it succeeds proving robustness, then so
does AntEater. The reason is that in the worst case scenario,
when only one robot remains, it will cover the remaining area
using the information gathered until then. Since in AntEater
there are no additional actions that depend on other robots, it
will not damage the ant algorithm’s original robustness.

Moreover, we claim that not only does the AntEater preserve
the original ant algorithm, but with some additions which are built
specifically for a certain ant algorithm, we can improve its run time,
efficiency, and/or robustness. As an example, the above Mark-Ant-
Walk algorithm does not know when to stop. This is due to its
bounded memory, which is not a function of the problem size and
thus, cannot count steps to know to stop after n

˚
d
r

ˇ
+ 1 steps,

when it is assured that the area is covered. However, our Elephant’s
memory is not bounded and therefore, an addition to the algorithm
of counting steps and a condition to stop after n

˚
d
r

ˇ
+ 1 improves

the original algorithm.
Indeed, we show (Theorem 2) that a group of N Elephants com-

putationally dominates a group of N Ants:

THEOREM 2. Let ANTN and ELEPHANTN be the models
portrayed in Subsection 3.1, where N is the number of robots, then
ELEPHANTN ¥ ANTN for N ≥ 1.

PROOF. Following Theorem 1, every algorithm executed by
ants can be executed by elephants, while completing the same goal

in at most the same computational complexity and while maintain-
ing the same characteristics. Therefore the computational ability of
N elephants is at least as strong as the computational ability of N
ants.

3.3 Elephant Gun
We have established the fact that a group of N Elephants dom-

inates a group of N Ants for N ≥ 1. This is strongly based on
the communication between the Elephants. Therefore the question
that arises is whether a single Elephant still dominates a single Ant.
In other words, after neutralizing the communication factor, is an
Elephant computationally stronger than an Ant. We consider a sub-
set of the general Elephant model, in which the Elephants have no
localization abilities. That is, the Elephant’s instruction set is the
same as before, but in this model it cannot fetch its own position.
In the following, we prove that, surprisingly, for this specific subset
of Elephants the answer is that an Ant is equivalent to the Elephant
model.

Most literature treats Ants as computationally equivalent to finite
state machines. Similarly, the computational power of an Elephant
is of a Turing machine. However, when we measure both models’
computability power, we have to also take into consideration the
space in which they operate in. Regarding the Elephants, there
is no added computational power, since space can be modeled as
additional tapes to a Turing machine, which is known to add no
power. However, that is not necessarily true for the Ant. Recall
that a finite state machine is equivalent to a Turing machine with
no tape. Thus, the addition of space to the model is equivalent to
the addition of a Turing machine tape, and with the assumption of
an infinite amount of pheromones as the ability to read and write on
that tape, we claim that the two models are of an equivalent power.

The intuition is that while an Ant has constant limited memory
(making it equivalent to a finite state machine), it can use its own
pheromones in space to give the Ant the external storage needed
to have the strength of a Turing machine, given it has an infinite
space to work in. Therefore, we will use the equivalent finite state
machine to the Ant model we defined and similarly the Turing ma-
chine equivalent to the Elephant model.

However, the ant robot will need to move in space for two in-
dependent purposes: First, to simulate the Elephant’s movements
in space. And second, to utilize pheromones for storage. Thus it
will need to remember if it is simulating movement or conducting
a calculation.

To solve that, we will keep track of two Turing machine heads:
The memory head, which moves during a calculation, and the
movement head, which moves during a movement of the phys-
ical robot. Also, we will add information to the pheromones,
which will point to the directions of each head. So, if instead of
pheromones in the size of the original Elephant alphabet |Σ|, we
will use pheromones in the size of 5 × 5 × |Σ| = 25|Σ| due to a
pointer with the direction to memory head, a pointer with the di-
rection to physical robot head, and the original alphabet. Each of
the first two consists all directions and a symbol pointed that the
Ant is on the pursued head. Note that we restrict ourselves here to
movement on a grid, and thus all directions include the four basic
movements on a grid: left, right, back, and forth (where the robot
moves left and right without actually turning).

Thus, when the Ant simulates a calculation done by the Elephant,
it will move left and right in space, acting as a a physical Turing
machine. But, if interrupted by a movement of the robot it will
first follow its own trail to find the physical robot head and once
reaching the head, it will move the head to the desired location.
Similarly, when needed to continue a calculation, the Ant will fol-

low the trail to the memory head and once reaching the head, it will
continue the calculation, changing the trail to point to the new head
location.

However, in order to accomplish the above routine, the Ant will
need to be careful not to create loops of pointers or rather not to
follow old trails that lead nowhere. Therefore, when the Ant moves
the memory head, it will both create a pointer to the memory head
in every step, even if there is already a pointer there, and create
a pointer to the movement head opposite of its own movement,
except when there is already a pointer there. On the other hand,
when the ant moves towards the memory head it will not change
any pointers, but follow the pointers that already exist.

More formally, given an Elephant Turing machine Elephant
such that:

Elephant = (Q, Σ, b, Γ, δ, s, F)

we will define the finite state machine ElephantGun as a Turing
Machine without a tape, since both models are equivalent [14], such
that:

ElephantGun = (Q”, Σ′, b, Γ, δ′, s′, F ′)

ElephantGun will have the states Q” = Q ∪ Q′,s′ = s,F ′ = F
where Q′ is a set of additional states that will be specified ahead,
and transitions δ′ = δ”, where again δ” will be specified ahead,
and in addition it will have an infinite amount of pheromones. Nev-
ertheless, these pheromones will be from a finite number of types,
such that the number of types |Σ′| corresponds to |Γ|× 5× 5. This
is the size of the triplet mentioned above, where the first element
represents the original alphabet Γ, the second points to the mem-
ory head, i.e. left, right, back, forth, or here, and the third points
to the physical robot location with the same 5 options. Let us also
define the operator x such that ∀x ∈ L, R, B, F |L = R, R =
L, B = F, F = B where L = left, R = right, B = back, and
F = forth.

The new states Q′, will be composed as follows for each q ∈ Q
and Z ∈ L, R, B, F :

• qsetmem(R)- an intermediate state to update the current slot
as the memory head

• qsetmem(L)- an intermediate state to update the current slot
as the memory head

• qsetloc(Z)- an intermediate state to update the current slot as
the robot’s location

• qfind- an intermediate state to find the robot’s location

• qfind(Z)- an intermediate state to find the robot’s location
and move one slot to Z ∈ L, R, B, F

Also, for each q ∈ Q, q′ ∈ Q, a ∈ Γ, b ∈ Γ:

• qa,b,q′,R- an intermediate state to find the memory head’s
location and perform the (q, a) → (q′, b, R) transition

• qa,b,q′,L- an intermediate state to find the memory head’s lo-
cation and perform the (q, a) → (q′, b, L) transition

In addition, we will replace the transitions δ by the new set of
transitions δ” such that every transition from the form (q, a) →
(q′, b, R) will be replaced by the following transitions, where y ∈
L, R, B, F , z ∈ L, R, B, F, H , and t is the empty pheromone:

• (q, (a, y, z)) → (qa,b,q′,R, (a, y, z), y) - for the case that the
ant is not on the memory head

• (q, (a, H, z)) → (q′setmem(R), (b, R, z), R) - for the case
that the ant is on the memory head

Also, we will add the following transitions, where S stands for no
movement:

• (qa,b,q′,R, (a, y, z)) → (qa,b,q′,R, (a, y, z), y) - continue
searching the memory head in the pointed direction

• (qa,b,q′,R, (a, H, z)) → (q′setmem(R), (b, R, L), R) - found
memory head, process transition, and move to the right

• (qsetmem(R), (a,t,t)) → (q, (a, H, L), S) - update mem-
ory head pointer to “here” and pointer to physical head

• (qsetmem(R), (a, y, z)) → (q, (a, H, z), S) - update mem-
ory head pointer to “here”

Likewise, every transition from the form (q, a) → (q′, b, L) will
be replaced by the following transitions:

• (q, (a, y, z)) → (qa,b,q′,L, (a, y, z), y) - for the case that the
ant is not on the memory head

• (q, (a, H, z)) → (q′setmem(L), (a, L, z), L) - for the case
that the ant is on the memory head

Also, we will add the following transitions:

• (qa,b,q′,L, (a, y, z)) → (qa,b,q′,L, (a, y, z), y) - continue
searching the memory head in the pointed direction

• (qa,b,q′,L, (a, H, z)) → (q′setmem(L), (b, L, R), R) - found
memory head, process transition, and move to the right

• (qsetmem(L), (a,t,t)) → (q, (a, H, R), S) - update mem-
ory head pointer to “here” and pointer to physical head

• (qsetmem(L), (a, y, z)) → (q, (a, H, z), S) - update mem-
ory head pointer to “here”

However, for every movement Z ∈ L, R, B, F and every z ∈
L, R, B, F ,y ∈ L, R, B, F, H of the physical robot, the ant will
have the following new transitions:

• (q, (a, y, z)) → (qfind(Z), (a, y, z), z)- for the case that the
ant is not on the physical robot head

• (q, (a, y, H)) → (qsetloc(Z), (a, y, Z), Z)- for the case that
the ant is on the physical robot head

Together with the following new transitions:

• (qfind(Z), (a, y, z)) → (qfind(Z), (a, y, z), z) - continue
searching the physical robot head in the pointed direction

• (qfind(Z), (a, y, H)) → (qsetloc(Z), (a, y, Z), Z) - found
physical robot head, update pointer, and move to the desired
direction Z ∈ L, R, B, F

• (qsetloc(Z), (a,t,t)) → (q, (a, Z, H), S) - update physi-
cal robot head pointer to “here” and memory head pointer to
where you came from

• (qsetloc(Z), (a, y, z)) → (q, (a, y, H), S) - update physical
robot head pointer to “here”

And, lastly for any action or sensing need to be done while the
ant is in its own physical location:

• (q, (a, y, z)) → (qfind, (a, y, z), z) - for the case that the
ant is not on the physical robot head

• (q, (a, y, H)) → (q, (a, y, H), S) - for the case that the ant
is on the physical robot head

Together with the following new transitions:

• (qfind, (a, y, z)) → (qfind, (a, y, z), z) - continue search-
ing the physical robot head in the pointed direction

• (qfind, (a, y, H)) → (q, (a, y, H), S) - found physical
robot head, the ant can sense or act

It is important to note that although it seems like the Ant’s com-
putational time will be huge relative to the Elephant’s, it irrelevant
in our case since we are proving computability. There may be dif-
ferent methods, which will be more optimal in the sense of time
and/or space.

In order to be sure that the procedure of moving between the
memory head and the physical robot head does not include any
loops or dead ends, we prove the following two lemmas.

LEMMA 1. No loop of pointers can be created by
ElephantGun.

PROOF. Assume, towards contradiction, that there is a set
of pointers (x1, x2, ..., xn) pointing to head a such that ∀i ∈
1..n, xi → xi+1modn (w.l.o.g), forming a loop. Thus, there ex-
ist no pointer xi which points to the inside nor the outside of the
loop. Also, none of xi is the head itself, otherwise it would not be
a loop. If the loop was created by head a itself, then the last pointer
in the loop will replace the first one and will point towards head a
and thus, breaking the loop. Otherwise, if the loop was created by
head b, the first pointer in the loop will not be replaced and will still
point towards head a. But head a is not a part of the loop, leading
to a contradiction.

LEMMA 2. At every instance in ElephantGun there is a path
of pointers between the two heads in each direction (not necessarily
the same path).

PROOF. Assume, towards contradiction, that there is no path of
pointers from head a to head b (w.l.o.g). Thus, there exist at least
one pointer in the path of pointers from a to b that does not lead to
b. Since the two heads start from the same place and since there is
no action of erasing, we can deduce that there was a path until the
above pointer was replaced, and not by b. But, although both heads
can add pointers, each of them can only replace its own pointers,
leading to a contradiction.

LEMMA 3. The finite state machine ElephantGun, when
equipped with infinite amount of pheromones and being ran on an
infinite grid, is equivalent to the Turing machine Elephant.

PROOF. It is easy to see that one can construct such a finite
state machine. The new transitions, states, and alphabet, though
each is larger then the original, they are still finite and thus, can
be constructed to simulate the Turing machine. Furthermore, once
created, the ElephantGun machine uses its infinite amount of
pheromones as the Turing machine’s alphabet and the grid it is lo-
cated in as the Turing machine’s tape to write in and read from.
Lastly, the extra transitions added allow the ElephantGun machine
to simulate both the Elephant’s movements and calculations inde-
pendently.

THEOREM 3. Let ANT1 and ELEPHANT1 be the mod-
els portrayed above correspondingly. Then, ANT1 ¥

ELEPHANT1.

PROOF. Following Lemma 3, we can construct an Ant that sim-
ulates the Elephant model which has no localization. Therefore,
each problem that can be solved by ELEPHANT1 can be solved
by ANT1. Thus, ANT1 ¥ ELEPHANT1.

When combining Theorem 2 and Theorem 3, we get the follow-
ing conclusion for a single Ant and a single Elephant, which has no
means of localization.

COROLLARY 1. ANT1 ≡ ELEPHANT1 for the subset of
the Elephant model which has no means of localization.

PROOF. Since we have shown in 2 that ELEPHANTN ¥

ANTN for N ≥ 1, then ELEPHANT1 ¥ ANT1. Also, we
have shown in 3 that ANT1 ¥ ELEPHANT1 for the subset of
the Elephant model which has no means of localization. Therefore,
ANT1 ≡ ELEPHANT1.

4. CONCLUSIONS
It was proposed that Ant robots can perform difficult computa-

tional tasks despite their weak computational abilities [18]. How-
ever, the computational limits of this model are still not known.
We defined Elephant, as the most used model of robots with strong
computational and sensing abilities and investigated the computa-
tional relationship between the two models.

We have shown that assuming reliable, instantaneous communi-
cation, Elephant robots can simulate any task done by Ant robots
and therefore, are at least as computationally strong as Ants. This
result is not surprising, as Elephants are by definition stronger.
However, more surprisingly, we have also shown that given a large
enough space and infinite amount of pheromones, a single Ant can
simulate any task done by a single Elephant that has no localization
abilities.

It is still not clear if a swarm of Ants can achieve the compu-
tational abilities of an Elephants herd. Furthermore, since in our
proof the Ant uses its environment as memory, we cannot evaluate
the Ant’s computational abilities upon restriction on its environ-
ment or rather on its movement in the area.

The most straightforward future direction will be to wrap the
equivalence between the two models, and that is to find out if N
Ants can simulate N Elephants. Another direction will be to find
out exactly how many Ants are needed to simulate an Elephant in
minimal time and space overhead.

5. REFERENCES
[1] N. Agmon and D. Peleg. Fault-tolerant gathering algorithms

for autonomous mobile robots. SIAM J. Comput.,
36(1):56–82, 2006.

[2] Y. Elmaliach, N. Agmon, and G. A. Kaminka. Multi-robot
area patrol under frequency constraints. In ICRA, 2007.

[3] N. Hazon, F. Mieli, and G. A. Kaminka. Towards robust
on-line multi-robot coverage. In ICRA, 2006.

[4] S. Koenig and Y. Liu. Terrain coverage with ant robots: a
simulation study. In AGENTS, pages 600–607, New York,
NY, USA, 2001. ACM.

[5] S. Koenig, B. Szymanski, and Y. Liu. Efficient and
inefficient ant coverage methods. Annals of Mathematics and
Artificial Intelligence, 31(1-4):41–76, 2001.

[6] T. H. Labella, M. Dorigo, and J.-L. Deneubourg. Division of
labor in a group of robots inspired by ants’ foraging
behavior. ACM Transactions on Autonomous Adaptive
Systems, 1(1):4–25, 2006.

[7] J. M. O’Kane and S. M. LaValle. On comparing the power of
robots. International Journal of Robotics Research,
27(1):5–23, January 2008.

[8] E. Osherovich, A. M. Bruckstein, and V. Yanovski. Covering
a continuous domain by distributed, limited robots. In ANTS
Workshop, pages 144–155, 2006.

[9] G. Prencipe. CORDA: Distributed coordination of a set of
atonomous mobile robots. In ERSADS, pages 185–190, May
2001.

[10] G. Prencipe. Instantaneous actions vs. full asynchronicity:
Controlling and coordinating a set of autonomous mobile
robots. In ICTCS, pages 185–190, October 2001.

[11] R. Russell. Heat trails as short-lived navigational markers for
mobile robots. In ICRA, volume 4, pages 3534–3539, 1997.

[12] R. Russell. Ant trails: An example for robots to follow? In
ICRA, volume 4, pages 2698–2703, 1999.

[13] A. Sempe, F.; Drogoul. Adaptive patrol for a group of robots.
In IROS, volume 3, pages 2865–2869, 2003.

[14] M. Sipser. Introduction to the Theory of Computation.
International Thomson Publishing, 1996.

[15] I. Suzuki and M. Yamashita. Agreement on a common x-y
coordinate system by a group of mobile robots. In In
proceedings of the 1996 Dagstuhl Workshop on Intelligent
Robots: Sensing, Modeling and Planning, pages 305–321.
World Scientific Press, 1997.

[16] I. Suzuki and M. Yamashita. Distributed anonymous mobile
robots: Formation of geometric patterns. SIAM Journal on
Computing, 28:1347–1363, 1999.

[17] I. Wagner, M. Lindenbaum, and A. Bruckstein. Distributed
covering by ant-robots using evaporating traces. IEEE
Transactions on Robotics and Automation,, 15(5):918–933,
1999.

[18] I. A. Wagner, Y. Altshuler, V. Yanovski, and A. M.
Bruckstein. Cooperative cleaners: A study in ant robotics.
International Journal of Robotics Research, 27(1):127–151,
2008.

[19] I. A. Wagner and A. M. Bruckstein. From ants to a(ge)nts: A
special issue on ant-robotics (editorial). Annals of
Mathematics and Artificial Intelligence, 31(1–4):1–5, 2001.

[20] V. Yanovski, I. A. Wagner, and A. M. Bruckstein.
Vertex-ant-walk: A robust method for efficient exploration of
faulty graphs. Annals of Mathematics and Artificial
Intelligence, 31(1–4):99–112, 2001.

