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Abstract. In the research area of multi-robot systems, several ressarbave re-
ported on consistent success in using heuristic measunaptove loose coordina-
tion in teams, by minimizing coordination costs using varioesristic techniques.
While these heuristic methods has proven successful in del@rains, they have
never been formalized, nor have they been put in context sfiegiwork on adap-
tation and learning. As a result, the conditions for thei tesmain unknown. We
posit that in fact all of these different heuristic methods iastances of reinforce-
ment learning in a one-stage MDP game, with the specific haufistctions used
as rewards. We show that a specific reward function—which allestfectiveness
Index (El)—is an appropriate reward function for learning to seleetween co-
ordination methods. El estimates tlesource-spending velociby a coordination
algorithm, and allows minimization of this velocity using faiail reinforcement
learning algorithms (in our case, Q-learning in one-stagePYiDhe paper analyt-
ically and empirically argues for the use of El by proving thatler certain condi-
tions, maximizing this reward leads to greater utility in thekt. We report on ini-
tial experiments that demonstrate that El indeed overcometgtions in previous
work, and outperforms it in different cases.
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1. Introduction

This paper begins with a puzzle. In the research area of malitit systems, several re-
searchers have reported on consistent success in usinigtitameasures—which for the
moment we caltoordination cosimeasures—to improve loose coordination in teams.
Specifically, Goldberg et al. [5], Zuluaga and Vaughan [E8]d Rosenfeld et al. [12]
all report that minimizing their respective coordinatiamst measures lead to improved
performance.

However, while these heuristic methods has proven suaddéasfeveral domains,
they have never been formalized to a degree that allowed @asom with other methods.
Nor have they been put in context of existing work on adaptatind learning. As a
result, their optimality and the appropriate conditionstfeir use remain open questions.

We posit that in fact all of these different heuristic meth@de instances of rein-
forcement learning in a one-stage MDP game [7], with the iipdteuristic functions



used as rewards. We further argue that the different coatidim cost measures are all
variations on central theme: Reducing the time and/or megsuspent on coordination.
These variations can be recast as reward functions witkilviBP game.

We show that a specific reward function—which we &#fiectiveness IndefEl)—
is an appropriate reward function for learning to selecieen coordination methods. El
estimates theesource-spending velocityy a coordination algorithm, and allows mini-
mization of this velocity using familiar reinforcement taing algorithms (in our case,
Q-learning in one-stage MDP game).

The paper analytically and empirically argues for the udelddy proving that under
certain conditions, maximizing this reward leads to great#ity in the task. We report
on initial experiments that demonstrate that El indeedav@es limitations in previous
work, and outperforms it in different cases.

2. Related Work

Most closely related to our work is earlier work on measuresamrdination effort.
Rosenfeld et al. [12], presented a method that adapts thetwel of coordination meth-
ods by multi-robot teams, to the dynamic settings in whidmanembers find them-
selves. The method relies on a measuring the resourcesdegben coordination, using
a measure called Combined Coordination C&E(). The adaptation is stateless, i.e.,
has no mapping from world state to actions/methods. Instb@dCCC is estimated at
any given point, and once it passes pre-learned (offlinenileg) thresholds, it causes
dynamic re-selection of the coordination methods by eadlvitual robot, attempting
to minimize the CCC.

Interference [5] is a closely related measure to CCC, andbeaseen as a special
case of it: It measures the amount of time spent on coordimaZiuluaga and Vaughan
[16] presented an method calladgressiorior reducing interference in distributed robot
teams, to improve their efficiency. During movement, mudtipbots frequently inter-
fere with each other. When such interference occurs, eadieabbots demonstrate its
own level of aggression such that the robot with the highestlibecomes the winner,
while the loser concedes its place. Zuluaga and Vaughanstemen that choosing ag-
gression level proportional to the robot’s task investnuamt produce better overall sys-
tem performance compared to aggression chosen at randasreElt is compatible
with Rosenfeld et al.’s conclusions that reducing totabtese spending in coordination
is highly beneficial.

We formulate and generalize Rosenfeld et al.’s work in tesfmeinforcement learn-
ing in single-state MDP game (MDG). Based on this generdlfpemulation, we are
able to explain the empirically-observed success of Resg et al.'s method (as a spe-
cial case), and suggest novel learning methods that do gairesan off-line learning
phase.

Indeed, the contribution of our work lies in the introductiaf a general reward func-
tion for coordination (and only for coordination). This ras function minimizeshe ve-
locity of resource expenditurén contrast, most investigations of reinforcement legni
in multi-robot settings have focused on other mechanisngs, (@odifying the basic Q-
learning algorithm), and utilized task-specific rewarddumns. We briefly discuss these
below. A recent survey appears in [15].



Balch [1] discusses considerations for task-oriented révitanctions for reinforce-
ment learning in multi-robot settings. He shows that theiadhof reward function in-
fluences the behavioral diversity, and group performaneevariety of tasks, including
foraging and soccer. Kok and Vlassis [9] discuss a techniqueropagating rewards
among cooperative robots, based on the structure of thendepee between the robots.
However, they too assume that the reward function is givgragsof the task.

Mataric[10] discusses three techniques for using rewardsuilti-robot Q-learning:
A local performance-based reward (each robot receivingr@for its own performance,
and per its own goals), a global performance-based rewdélrdofmts receive reward
based on achievement of team goals), and a heuristic stnafsgred to as shaped rein-
forcement. Shaped reinforcement, which was developed kardaprovides a heuris-
tic function that combines rewards based on local rewardbad rewards and coordi-
nation interference of the robots. in contrast to thesesiigations, we explore general
reward functions, based on minimize resource use, and ese ith selecting between
coordination behaviors, rather than individual behaviors

Kapetanakis and Kudenko [7] present the FMQ learning algori This algorithm
is intended for coordination learning in one-stage MDP gariR®Q is a modified regu-
lar Q-Learning method for one-stage games and this moddita based on the Boltz-
man'’s strategy. They then examine how an robot that uses Ed@ihg technique may
influence other robot’s effectiveness of learning, wherdtter uses a simple Q-learning
algorithm [8]. This method does not use communication oritedng of other robot’s
action, but based on the assumption that all of the robotgedttang the same rewards.

The Q-learning algorithm used in these works has no statadady to the pro-
posed method, but Kapetanakis and Kudenko’s works are otmatiag on improving
effectiveness of the learning algorithm and assume thandswvere pre-defined before
and thus, the robot just has to discover them. In opposite;omeentrate on the method
of reward determination by the robot. In the real world we dblrave predefined rewards
and especially when distinguishing between rewards fromatiers with the same goal
is needed. Therefore, Kapetanakis and Kudenko’s work dikeany other works of Re-
inforcement Learning is concentrated on Q-learning atgorimodification and assume
pre-definition of the rewards, should be considered as a lbomaptary work instead of
an alternative to ours.

3. Maximizing Social Utility by Limiting Coordination Costs

We first cast the problem of selecting coordination algonilas a reinforcement learning
problem (Section 3.1). We then introduce the effective x{@) in Section 3.2. We then

discuss the conditions underwhich maximizing it leads tpriowed task performance,
and provide a proof sketch, in Section 3.3.

3.1. Coordination Algorithm Selection as an RL Problem

Multilateral coordination prevents and resolves conflatsong robots in a multi-robot
system (MRS). Such conflicts can emerge as results for sliasedirce (e.g., space),
or as a result of violation of joint decisions by team-mersb&tany coordination algo-
rithms (protocols) have been proposed and explored by MB&arehers [4,5,11,13,14].



Not one method is good for all cases and group sizes [12]. Mexydeciding on a coor-
dination method for use is not a trivial task, as the effestass of coordination methods
in a given context is not known in advance.

We focus here on loosely-coupled application scenariogevbeordination is trig-
gered by conflict situations, identified through some meidmariwe assume the exis-
tence of such mechanism exists, though it may differ betwleemains; most researchers
simply use a pending collision as a trigger). Thus the nonmaiine of an robot’s oper-
ation is to carry out its primary task, until it is interrugdtby an occurring or potentially-
occurring conflict with another robot, which must be resdioy a coordination algo-
rithm. Each such interruption is calledconflict eventThe event triggers a coordina-
tion algorithm to handle the conflict. Once it successfulhysies, the robots involved
go back to their primary task. Such scenarios include mmalibt foraging, formation
maintenance (coordinated movement), and delivery.

LetA=1{...,a;...},1 <i < N be agroup ofV robots, cooperating on a group
task that started at time (arbitrarily) lasts upto timél" (A starts working and stops
working on the task together). We denotely= {¢; ;},0 < j < K; the set of conflict
events for robot, wherec; ; marks the time of the beginning of each conflict. Note
that each robot may have been interrupted a different number of time, kg.may be
different for different robots. For notational uniformity x,+1 = 7', andc; o is defined
as time0.

The time between the beginning of a conflict evgnand up until the next event,
the intervall; ; = [c; ;, ¢ j4+1), can be broken into two conceptual periods: Hotive
intervallgj = [¢;,5,t;,5) (for somec; ; < t; ; < ¢; j+1) in which the robot was actively
investing resources in coordination, and ﬂmsive’nterval]fjj = [ti j, ¢ j+1) In which
the robot no longer requires investing in coordinationnfribs perspective the conflict
event has been successfully handled, and it is back to ogroyit its task. By definition
I j = If;+I7 ;. We define theotal active timeas/® = 3~ 5 I, and thetotal passive
timeas!? =3, > I .

Our research focuses on a case where the robot has a noneshptyaf coordi-
nation algorithms to select from. The choice of a specificdmation methodx € M
for a given conflict event; ; may effect the active and passive intervis, If’ ;- Tode-
note this dependency we ukg;(«), I (a), I} ;(«) as total, active and passive intervals
(respectively), due to using coordination methad

Using this notation, we can phrase the selection of cootidinalgorithms as de-
termining a policy for selecting between different cooetion methods among those in
M. We denote a robats selection at conflict evert ; asll; ;. A sequence of these se-
lections, for all eventg < K, is denoted by1;; this defines an individual coordination
policy. The set of individual policies of all robots it is markedI.

Formally, we define the problem of coordination algorithriestion as a one-stage
Markov Decision Process (MDP) game, with a limited set ofcmd (selectable algo-
rithms), and an individual reward for each robot (playel) Fach robot tries to max-
imize its own reward. Typically, reward functions are giveand indeed most previous
work focuses on learning algorithms that use the rewardtiome as efficiently as pos-
sible. Instead, we assume a very basic learning algorithsinfple Q-Learning vari-
ant), and instead focus on defining a reward function. Thenleg algorithm we use is
stateless:



Qi(a) = Qi-1(a) + p(Ri(a) — YQi-1(a))
Wherep is the learning speed factor, afds a factor of discounting.
3.2. Effectiveness Index

We call the proposed general reward for coordinakéfectiveness Indg¥l). Its domain
independence is based on its using three intrinsic (ratiear extrinsic) factors in its
computation; these factors depend only internal comprtati measurement, rather than
environment responses.

The time spent coordinating.The main goal of a coordination algorithm is to reach a
(joint) decision that allows all involved robots to contentheir primary activity. There-
fore, the sooner the robot returns to its main task, the Iessis spent on coordination,
and likely, the robot can finish its task more quickly. Thusafler I¢ is better.

The frequency of coordinating.If there are frequent interruptions—even if short-
lived—to the robot’s task, in order to coordinate, this wodklay the robot. We as-
sume (and the preliminary results show) that good cooridinatecisions lead to long
durations of non-interrupted work by the robot. Thereftine,frequency of coordination
method’s use is not less important, than the time spent ofticmesolving. Thus, larger
I, is better.

The cost of coordinating. Finally, in addition to speed of conflict resolution and fre-
quency of calling, careful resource spending is a very ingmirfactor for behavior se-
lection. Short-lived, infrequent calls to an expensiverdamation method will not be
preferable to somewhat more frequent calls to very cheapgowion method. It is thus
important to consider the internal resources used by theethmethod. We argue that
such internal estimate of resource usage is feasible.

First, some resource usage is directly measurable. Famiost energy consumption
during coordinated movement (e.g., when getting out of aiptescollision) or commu-
nications (when communicating to avoid a collision) is die measurable in robots, by
accessing the battery device before and after using thelic@dion algorithm.

Second, resource usage may sometimes be analytically ¢edhpor instance,
given a the basic resource cost of a unit of transmissioncdis¢ of using a specific
protocol may often be analytically computed (as it is tiegbdily to its communication
complexity in bits).

Rosenfeld et al. [12] have defin€dC'C' as the total cost of resources spent on re-
solving conflicts (re-establishing coordination) befadaring, and after a conflict oc-
curs. Their definition of the cost consisted of a weighted sidirthe costs of different
resources. We denote By the utility of coordination, of robot, of which the cost of
coordination, denoted'’ is components. By definitiolCC' = C£. It can be broken
into the costs spent on resolving all confligts CF = >, CCC, ;.

Let us use a cost functiotvst;(«, t) to represent the costs due to using coordina-
tion methoda € M at any timet during the lifetime of the robot. The function is not
necessarily known to us a-priori (and indeed, in this redeas not).

Using the functiorvost;(«a, t) we redefine thé‘fj of a particular event of robatat
timec; ; to be:



Cij+1
ij(a) = / cost;(a, t) dt (@D)]

(2%

We remind the reader thétfj is defined as the costs of applying the coordination
algorithm during the active intervéd; ;,¢; ;) and the passive intervél; ;, ¢; j+1). How-
ever, the coordination costs during the passive interneakaro by definition.

ti i
ng(a) = fci J.J costi(a,t) dt + f;j’“ cost;(a, t) dt

.’. 2
= fi” cost;(a, t) dt @

We define théActive Coordination CofACC) function for robot and methodv at
time; ;, that considers thactive timein the calculation of coordination resources cost:

ti;
ACC; j(a) = / 1+ cost;(a,t) dt ()

(2%

We finally define Effectiveness Index of a particular eventodifot: at timec; ; due
to using coordination methad € M:

ACC; (o) fctj 1+ cost;(a, t) dt @

.. a D
L I+ 1

EIZ'J‘ (Oé)

Thatis, the effectiveness index (El) of an algorithrduring this event is the velocity
by which it spends resources during its execution, amatttae how long a period in
which no conflict occurs. Since greater El signifies greatets; we typically put a
negation sign in front of the El, to signify that greater \eitp is worse; we seek to
minimize resource spending velocity.

3.3. An Analytical Look at El

We now turn to briefly sketch the conditions underwhich amritimizing policyIT will
lead to greater team performance on its group task. Due kafspace, we will provide
only a sketch of the proof, and refer the reader to [3] for twidal details.

Preliminaries. We use the following notations in addition to those alreadyuksed.
First, we denote byJ; is the individual utility of roboti. U marks its utility due to
executing the taskgsk utility), andUS marks its utility due to being coordinated with
others at a conflict situatioregordination utility): U; = UT + US. Each such utility
value can be broken into gaiigand cost<: Ul = GT — CF andUS = G¢ — CF.
The social utilityU is the sum of all individual utilities of the robot&: = Zﬁil U;.

To maximize this sum, the robot can invest effort in maximgzthe utility from
the task, and/or the utility from coordination. In the sameyyto maximize the social
utility of the team, each robot can invest effort in maximgithe its own utility and/or
the teammates’ utility. We are interested in task-indepahdeward functions, and thus
focus our attention on maximizing utility from coordinati¢social utility).

Let us use a functiorgain,(«,t) to denote the coordination gain at any time
during the lifetime of the robot that uses method. When a robot is handling a con-



flict event, it is not gaining anything from coordination (arct, it is investing effort in
re-establishing coordination). Thus, theuin;(«,t) function can be defined as a step
function

. 0 robotz in a conflict situation
cgain;(a,t) = { 1 other (5)

Using this function, we redefine thféT of a particular event of robatat timec; ;
to be:

GZi(@) = [T cgaing(o, t) dt = fc ' cgain;(a,t) dt + fcl I cgainz(oz t) dt
, .

C.

=0+ fth”l cgain;(a,t) dt = [ i+ cgain;(a,t) dt = ftc‘ ]t = I} (@)

tij

(6)

Now, we can define two evaluation functions of coordinatiofiqy.

e Social Utility of team by using policyl

N K;
=22 Uil ZZ I, )+ GS,(T, ;) — C2 (1L ;) (7)

e Social ACCof team by using policyIl

N K;

AcC() =Y ) ACCe; (1, ) (8)

i J

Based on the above, we would ideally want to show that (1)mmizing El with each
event leads to improved coordination utility for the teamd &hat (2) this, in turn, leads
to improved overall task performance of the team (greateiakatility). The first part is
in some sense already given, when we use the FMQ framewoilkn@iss its conditions
hold, we can expect individual rewards to be maximized,(ilee coordination utility
will be greater individually). However, the second part isrenchallenging.

It is possible to show, that if the coordination costs fortéem are minimized (i.e.,
the sum of coordination costs for all robots is minimizetgrt the coordination utility
of the team is greater (Lemma 1).

Lemma 1. TheCoordination Utilityfor policy IT’ is better thanCoordination Utilityfor
policy IT" if Social ACCfor IT’ is lower thanSocial ACCfor I1"”.

ACC(IT) < AcC(l”) = UC(IT') > U (11")

Proof. For space reasons, we provide a proof sketch. See [3] fordlgonoof. The in-
tuition for the lemma'’s truth is as follows. WCC(II") < ACC(II"), then necessarily
(by a sequence of rewritings)?(I1') + CC(I') < I¢(I1") + CC(I1"). This in turn im-
plies that/?(IT") — C¢(II') > I7(I1") — C(I1"). From the definition of7{; (a) above
(Eg. 6), we therefore havg® (T1') — C°(I1") > G (11") — € (11""), which means that
UcIr) > vear). O



Social (overall) utility is defined a& (IT) = U (IT) + U (IT). The question there-
fore becomes under what conditions does an improved caidimutility policy leads
to improved social utility; i.e., when doés® (I1') > U (I1") = U(II') > U(I1"")? We
consider several cases.

Case 1UI(II') > UF(I1”). Here, the conflict solving methods do not affect individ-
ual task utility (or make it better), fall robots. In this case it is easy to see that the accu-
mulated task utility is greater, and the greater task anddioation utilities, combined,
result in greater overall utility.

Suppose, however, that one robot’s task utility under tHeypaI’ is actually made
worse than other the competing policy. Does that autonibtiozean that the overall
utility for the team is worse when usifd@f? The answer is no; the robot might in fact be
sacrificing its own task utility to maximize the team’s (adl@ioorating robots might be
expected to do [6]). The question is whether its sacrificeommmensated for by greater
rewards to others.

Case 2UX(I") < UX ("), butUuT(11’) > UT(1"). For all reduction in task utility
made by the choice of conflict solving method exists numbeoafipensations in other
conflicts of other robots in the team.

Finally, it might still be possible for the team to perfornttiee with policyIT’ even
when task performance is made worse.

Case 3UT(IV') < UL ("), butuT (") — UT(I') < UC(I') — UC(IT"). In the
case where the loss in team task utility from using poliEyis smaller than benefit in
team coordination utility that policii’ provides, it is still true that/ 7' (I1') 4+ U “ (IT') >
UT(H//) + UC(H”).

Tying these three cases above together, we now state theidomgctheorem:

Theorem 2. El is a good individual reward for total social utilityf (i) either case 1,
2, or 3 above hold; and (ii) EI minimization policy leads toxmaal coordination utility
U¢ for the team.

Proof. See discussion above. O

4. Experiments

We now turn to briefly survey a subset of empiric results sugapgpthe use of El and the
stateless Q-learning algorithm in multi-robot team foragiHere, robots locate target
items (pucks) within the work area, and deliver them to a gegibn. As was the case in
Rosenfeld’s work [12], we used the TeamBots simulator [2jute experiments. Team-
bots simulated the activity of groups of Nomad N150 robots faraging area that mea-
sured approximately 5 by 5 meters. We used a total of 40 tprgeds, 20 of which where
stationary within the search area, and 20 moved randomhe&ach group, we measured
how many pucks were delivered to the goal region by groups®is,25,35,39 robots
within 20 simulated minutes. We averaged the results of Q@r8ls in each group-size
configuration with the robots being placed at random infiiaitions for each run.

We compare the EI method with two other coordination alomitselection meth-
ods: Random coordination algorithm selection (RND), antheomethod of Rosenfeld
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Figure 1. Experiment results, time limit 20 minutes.

et al. (ACIM). All of these (EI, RND, ACIM) dynamically selebetween several fixed
coordination algorithms, discussed in [12]: Noise (whiglsentially allows the robots
to collide in their motion uncertainty does not preventisatin), Aggression [14], and
Repel, in which robots back off a variable distance to avoithaending collision.

Figures 1(a)-1(d) show a subset of results. In all, the X ardsks the group size,
and the Y axis marks the number of pucks collected. Figurg si{aws that given no
resource limitations, the El is just as good as ACIM, degpbi¢efact that El does not use
off-line learning. When resource (fuel in this case) limdas are applied (Figure 1(b)),
each method spends 1, 3 or 5 units per step (see humber irididackets after name
of method). The EI method can performs as good as any othesn(giCCC function
which gives time a weight of 70% and fuel 30%), or as worse gsadimer (with time
weight of 100%, i.e., when ignoring fuel costs). When reselirits are known a-priory
the ACIM method provides the same result (or slightly sup@ias EI (Figure 1(c). But
when these resource limits are unknown(Figure 1(d)), atidmmgl methods spend more
than advertised (in this case, aggression spend 0.5 extsaafrfuel per step), the El
method leads to significantly improved results. In both eftivo last figures, thé€'CC
gave time a weight of 70% and fuel 30%. The methods for seleatiere Noise(5),
Repel(5) and Aggression(5.5).



5. Summary

This paper examined in depth the success of previouslyréparistic methods in im-
proving loose coordination in teams, by selecting betwe#ardnt coordination meth-
ods. We have shown that these methods can be cast as solvialgi-agent reinforce-

ment learning problem (specifically, a one-stage MDP gaare) that existing heuristics
can be viewed as rudimentary reward functions.

We have argued for a more principled investigation of appatg reward functions
for this framework, and presented a novel reward functiatied Effectiveness Index,
which essentially measures the velocity in which resouacespent when reestablishing
conflicts. We analytically examine the cases underwhictutieeof this reward function
leads to improved performance, and then empirically shdwahihdeed it leads to better
performance then existing methods of adaptation. We plaxtend our analysis and
empiric investigation to examine additional domains amuairtéasks.
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