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Abstract. In the research area of multi-robot systems, several researchers have re-
ported on consistent success in using heuristic measures to improve loose coordina-
tion in teams, by minimizing coordination costs using various heuristic techniques.
While these heuristic methods has proven successful in several domains, they have
never been formalized, nor have they been put in context of existing work on adap-
tation and learning. As a result, the conditions for their use remain unknown. We
posit that in fact all of these different heuristic methods are instances of reinforce-
ment learning in a one-stage MDP game, with the specific heuristic functions used
as rewards. We show that a specific reward function—which we call Effectiveness
Index (EI)—is an appropriate reward function for learning to select between co-
ordination methods. EI estimates theresource-spending velocityby a coordination
algorithm, and allows minimization of this velocity using familiar reinforcement
learning algorithms (in our case, Q-learning in one-stage MDP). The paper analyt-
ically and empirically argues for the use of EI by proving thatunder certain condi-
tions, maximizing this reward leads to greater utility in the task. We report on ini-
tial experiments that demonstrate that EI indeed overcomes limitations in previous
work, and outperforms it in different cases.
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1. Introduction

This paper begins with a puzzle. In the research area of multi-robot systems, several re-
searchers have reported on consistent success in using heuristic measures—which for the
moment we callcoordination costmeasures—to improve loose coordination in teams.
Specifically, Goldberg et al. [5], Zuluaga and Vaughan [16],and Rosenfeld et al. [12]
all report that minimizing their respective coordination cost measures lead to improved
performance.

However, while these heuristic methods has proven successful in several domains,
they have never been formalized to a degree that allowed comparison with other methods.
Nor have they been put in context of existing work on adaptation and learning. As a
result, their optimality and the appropriate conditions for their use remain open questions.

We posit that in fact all of these different heuristic methods are instances of rein-
forcement learning in a one-stage MDP game [7], with the specific heuristic functions



used as rewards. We further argue that the different coordination cost measures are all
variations on central theme: Reducing the time and/or resources spent on coordination.
These variations can be recast as reward functions within the MDP game.

We show that a specific reward function—which we callEffectiveness Index(EI)—
is an appropriate reward function for learning to select between coordination methods. EI
estimates theresource-spending velocityby a coordination algorithm, and allows mini-
mization of this velocity using familiar reinforcement learning algorithms (in our case,
Q-learning in one-stage MDP game).

The paper analytically and empirically argues for the use ofEI by proving that under
certain conditions, maximizing this reward leads to greater utility in the task. We report
on initial experiments that demonstrate that EI indeed overcomes limitations in previous
work, and outperforms it in different cases.

2. Related Work

Most closely related to our work is earlier work on measures of coordination effort.
Rosenfeld et al. [12], presented a method that adapts the selection of coordination meth-
ods by multi-robot teams, to the dynamic settings in which team-members find them-
selves. The method relies on a measuring the resources expended on coordination, using
a measure called Combined Coordination Cost (CCC). The adaptation is stateless, i.e.,
has no mapping from world state to actions/methods. Instead, the CCC is estimated at
any given point, and once it passes pre-learned (offline learning) thresholds, it causes
dynamic re-selection of the coordination methods by each individual robot, attempting
to minimize the CCC.

Interference [5] is a closely related measure to CCC, and canbe seen as a special
case of it: It measures the amount of time spent on coordination. Zuluaga and Vaughan
[16] presented an method calledaggressionfor reducing interference in distributed robot
teams, to improve their efficiency. During movement, multiple robots frequently inter-
fere with each other. When such interference occurs, each of the robots demonstrate its
own level of aggression such that the robot with the highest level becomes the winner,
while the loser concedes its place. Zuluaga and Vaughan haveshown that choosing ag-
gression level proportional to the robot’s task investmentcan produce better overall sys-
tem performance compared to aggression chosen at random. This result is compatible
with Rosenfeld et al.’s conclusions that reducing total resource spending in coordination
is highly beneficial.

We formulate and generalize Rosenfeld et al.’s work in termsof reinforcement learn-
ing in single-state MDP game (MDG). Based on this generalized formulation, we are
able to explain the empirically-observed success of Rosenfeld et al.’s method (as a spe-
cial case), and suggest novel learning methods that do not require an off-line learning
phase.

Indeed, the contribution of our work lies in the introduction of a general reward func-
tion for coordination (and only for coordination). This reward function minimizesthe ve-
locity of resource expenditure. In contrast, most investigations of reinforcement learning
in multi-robot settings have focused on other mechanisms (e.g., modifying the basic Q-
learning algorithm), and utilized task-specific reward functions. We briefly discuss these
below. A recent survey appears in [15].



Balch [1] discusses considerations for task-oriented reward functions for reinforce-
ment learning in multi-robot settings. He shows that the choice of reward function in-
fluences the behavioral diversity, and group performance ina variety of tasks, including
foraging and soccer. Kok and Vlassis [9] discuss a techniquefor propagating rewards
among cooperative robots, based on the structure of the dependence between the robots.
However, they too assume that the reward function is given aspart of the task.

Mataric[10] discusses three techniques for using rewards in multi-robot Q-learning:
A local performance-based reward (each robot receiving reward for its own performance,
and per its own goals), a global performance-based reward (all robots receive reward
based on achievement of team goals), and a heuristic strategy referred to as shaped rein-
forcement. Shaped reinforcement, which was developed by Mataric, provides a heuris-
tic function that combines rewards based on local rewards, global rewards and coordi-
nation interference of the robots. in contrast to these investigations, we explore general
reward functions, based on minimize resource use, and use them in selecting between
coordination behaviors, rather than individual behaviors.

Kapetanakis and Kudenko [7] present the FMQ learning algorithm. This algorithm
is intended for coordination learning in one-stage MDP games. FMQ is a modified regu-
lar Q-Learning method for one-stage games and this modification is based on the Boltz-
man’s strategy. They then examine how an robot that uses FMQ learning technique may
influence other robot’s effectiveness of learning, when thelatter uses a simple Q-learning
algorithm [8]. This method does not use communication or monitoring of other robot’s
action, but based on the assumption that all of the robots aregetting the same rewards.

The Q-learning algorithm used in these works has no states, similarly to the pro-
posed method, but Kapetanakis and Kudenko’s works are concentrating on improving
effectiveness of the learning algorithm and assume that rewards were pre-defined before
and thus, the robot just has to discover them. In opposite, weconcentrate on the method
of reward determination by the robot. In the real world we do not have predefined rewards
and especially when distinguishing between rewards from behaviors with the same goal
is needed. Therefore, Kapetanakis and Kudenko’s work, likea many other works of Re-
inforcement Learning is concentrated on Q-learning algorithm modification and assume
pre-definition of the rewards, should be considered as a complimentary work instead of
an alternative to ours.

3. Maximizing Social Utility by Limiting Coordination Costs

We first cast the problem of selecting coordination algorithms as a reinforcement learning
problem (Section 3.1). We then introduce the effective index (EI) in Section 3.2. We then
discuss the conditions underwhich maximizing it leads to improved task performance,
and provide a proof sketch, in Section 3.3.

3.1. Coordination Algorithm Selection as an RL Problem

Multilateral coordination prevents and resolves conflictsamong robots in a multi-robot
system (MRS). Such conflicts can emerge as results for sharedresource (e.g., space),
or as a result of violation of joint decisions by team-members. Many coordination algo-
rithms (protocols) have been proposed and explored by MRS researchers [4,5,11,13,14].



Not one method is good for all cases and group sizes [12]. However, deciding on a coor-
dination method for use is not a trivial task, as the effectiveness of coordination methods
in a given context is not known in advance.

We focus here on loosely-coupled application scenarios where coordination is trig-
gered by conflict situations, identified through some mechanism (we assume the exis-
tence of such mechanism exists, though it may differ betweendomains; most researchers
simply use a pending collision as a trigger). Thus the normalroutine of an robot’s oper-
ation is to carry out its primary task, until it is interrupted by an occurring or potentially-
occurring conflict with another robot, which must be resolved by a coordination algo-
rithm. Each such interruption is calleda conflict event. The event triggers a coordina-
tion algorithm to handle the conflict. Once it successfully finishes, the robots involved
go back to their primary task. Such scenarios include multi-robot foraging, formation
maintenance (coordinated movement), and delivery.

Let A = {. . . , ai, . . .}, 1 ≤ i ≤ N be a group ofN robots, cooperating on a group
task that started at time0 (arbitrarily) lasts upto timeT (A starts working and stops
working on the task together). We denote byTi = {ci,j}, 0 ≤ j ≤ Ki the set of conflict
events for roboti, whereci,j marks the time of the beginning of each conflict. Note
that each roboti may have been interrupted a different number of time, i.e.,Ki may be
different for different robots. For notational uniformity, ci,Ki+1 = T , andci,0 is defined
as time0.

The time between the beginning of a conflict eventj, and up until the next event,
the intervalIi,j = [ci,j , ci,j+1), can be broken into two conceptual periods: Theactive
intervalIa

i,j = [ci,j , ti,j) (for someci,j < ti,j < ci,j+1) in which the robot was actively
investing resources in coordination, and thepassiveintervalIp

i,j = [ti,j , ci,j+1) in which
the robot no longer requires investing in coordination; from its perspective the conflict
event has been successfully handled, and it is back to carrying out its task. By definition
Ii,j = Ia

i,j +I
p
i,j . We define thetotal active timeasIa =

∑

i

∑

j Ia
i,j and thetotal passive

timeasIp =
∑

i

∑

j I
p
i,j .

Our research focuses on a case where the robot has a nonempty set M of coordi-
nation algorithms to select from. The choice of a specific coordination methodα ∈ M

for a given conflict eventci,j may effect the active and passive intervalsIa
i,j , I

p
i,j . To de-

note this dependency we useIi,j(α), Ia
i,j(α), Ip

i,j(α) as total, active and passive intervals
(respectively), due to using coordination methodα.

Using this notation, we can phrase the selection of coordination algorithms as de-
termining a policy for selecting between different coordination methods among those in
M . We denote a roboti’s selection at conflict eventci,j asΠi,j . A sequence of these se-
lections, for all eventsj ≤ Ki, is denoted byΠi; this defines an individual coordination
policy. The set of individual policies of all robots inA is markedΠ.

Formally, we define the problem of coordination algorithm selection as a one-stage
Markov Decision Process (MDP) game, with a limited set of actions (selectable algo-
rithms), and an individual reward for each robot (player) [7]. Each robot tries to max-
imize its own reward. Typically, reward functions are given, and indeed most previous
work focuses on learning algorithms that use the reward functions as efficiently as pos-
sible. Instead, we assume a very basic learning algorithm (asimple Q-Learning vari-
ant), and instead focus on defining a reward function. The learning algorithm we use is
stateless:



Qt(a) = Qt−1(a) + ρ(Rt(a) − γQt−1(a))

Whereρ is the learning speed factor, andγ is a factor of discounting.

3.2. Effectiveness Index

We call the proposed general reward for coordinationEffectiveness Index(EI). Its domain
independence is based on its using three intrinsic (rather than extrinsic) factors in its
computation; these factors depend only internal computation or measurement, rather than
environment responses.

The time spent coordinating.The main goal of a coordination algorithm is to reach a
(joint) decision that allows all involved robots to continue their primary activity. There-
fore, the sooner the robot returns to its main task, the less time is spent on coordination,
and likely, the robot can finish its task more quickly. Thus, smallerIa

i is better.

The frequency of coordinating.If there are frequent interruptions—even if short-
lived—to the robot’s task, in order to coordinate, this woulddelay the robot. We as-
sume (and the preliminary results show) that good coordination decisions lead to long
durations of non-interrupted work by the robot. Therefore,the frequency of coordination
method’s use is not less important, than the time spent on conflict resolving. Thus, larger
I

p
i,j is better.

The cost of coordinating. Finally, in addition to speed of conflict resolution and fre-
quency of calling, careful resource spending is a very important factor for behavior se-
lection. Short-lived, infrequent calls to an expensive coordination method will not be
preferable to somewhat more frequent calls to very cheap coordination method. It is thus
important to consider the internal resources used by the chosen method. We argue that
such internal estimate of resource usage is feasible.

First, some resource usage is directly measurable. For instance, energy consumption
during coordinated movement (e.g., when getting out of a possible collision) or commu-
nications (when communicating to avoid a collision) is directly measurable in robots, by
accessing the battery device before and after using the coordination algorithm.

Second, resource usage may sometimes be analytically computed. For instance,
given a the basic resource cost of a unit of transmission, thecost of using a specific
protocol may often be analytically computed (as it is tied directly to its communication
complexity in bits).

Rosenfeld et al. [12] have definedCCC as the total cost of resources spent on re-
solving conflicts (re-establishing coordination) before,during, and after a conflict oc-
curs. Their definition of the cost consisted of a weighted sumof the costs of different
resources. We denote byUC

i the utility of coordination, of roboti, of which the cost of
coordination, denotedCC

i is components. By definition,CCC = CC
i . It can be broken

into the costs spent on resolving all conflictsTi, CC
i =

∑

j CCCci,j
.

Let us use a cost functioncosti(α, t) to represent the costs due to using coordina-
tion methodα ∈ M at any timet during the lifetime of the robot. The function is not
necessarily known to us a-priori (and indeed, in this research, is not).

Using the functioncosti(α, t) we redefine theCC
i,j of a particular event of roboti at

time ci,j to be:



CC
i,j(α) =

∫ ci,j+1

ci,j

costi(α, t) dt (1)

We remind the reader thatCC
i,j is defined as the costs of applying the coordination

algorithm during the active interval[ci,j , ti,j) and the passive interval[ti,j , ci,j+1). How-
ever, the coordination costs during the passive interval are zero by definition.

CC
i,j(α) =

∫ ti,j

ci,j
costi(α, t) dt +

∫ ci,j+1

ti,j
costi(α, t) dt

=
∫ ti,j

ci,j
costi(α, t) dt

(2)

We define theActive Coordination Cost(ACC) function for roboti and methodα at
time ci,j , that considers theactive timein the calculation of coordination resources cost:

ACCi,j(α) =

∫ ti,j

ci,j

1 + costi(α, t) dt (3)

We finally define Effectiveness Index of a particular event ofroboti at timeci,j due
to using coordination methodα ∈ M :

EIi,j(α) =
ACCi,j(α)

Ii,j

=

∫ ti,j

ci,j
1 + costi(α, t) dt

Ia
i,j + I

p
i,j

(4)

That is, the effectiveness index (EI) of an algorithmα during this event is the velocity
by which it spends resources during its execution, amortized by how long a period in
which no conflict occurs. Since greater EI signifies greater costs, we typically put a
negation sign in front of the EI, to signify that greater velocity is worse; we seek to
minimize resource spending velocity.

3.3. An Analytical Look at EI

We now turn to briefly sketch the conditions underwhich an EI-minimizing policyΠ will
lead to greater team performance on its group task. Due to lack of space, we will provide
only a sketch of the proof, and refer the reader to [3] for additional details.

Preliminaries. We use the following notations in addition to those already discussed.
First, we denote byUi is the individual utility of roboti. UT

i marks its utility due to
executing the task (task utility), andUC

i marks its utility due to being coordinated with
others at a conflict situation (coordination utility): Ui = UT

i + UC
i . Each such utility

value can be broken into gainsG and costsC: UT
i = GT

i − CT
i andUC

i = GC
i − CC

i .
The social utilityU is the sum of all individual utilities of the robots:U =

∑N

i=1
Ui.

To maximize this sum, the robot can invest effort in maximizing the utility from
the task, and/or the utility from coordination. In the same way, to maximize the social
utility of the team, each robot can invest effort in maximizing the its own utility and/or
the teammates’ utility. We are interested in task-independent reward functions, and thus
focus our attention on maximizing utility from coordination (social utility).

Let us use a functioncgaini(α, t) to denote the coordination gain at any timet

during the lifetime of the roboti that uses methodα. When a robot is handling a con-



flict event, it is not gaining anything from coordination (infact, it is investing effort in
re-establishing coordination). Thus, thecgaini(α, t) function can be defined as a step
function

cgaini(α, t) =

{

0 roboti in a conflict situation
1 other

(5)

Using this function, we redefine theGT
i,j of a particular event of roboti at timeci,j

to be:

GC
i,j(α) =

∫ ci,j+1

ci,j
cgaini(α, t) dt =

∫ ti,j

ci,j
cgaini(α, t) dt +

∫ ci,j+1

ti,j
cgaini(α, t) dt

= 0 +
∫ ci,j+1

ti,j
cgaini(α, t) dt =

∫ ci,j+1

ti,j
cgaini(α, t) dt =

∫ ci,j+1

ti,j
1 dt = I

p
i,j(α)

(6)
Now, we can define two evaluation functions of coordination policy.

• Social Utilityof team by using policyΠ

U(Π) =

N
∑

i

Ki
∑

j

Ui,j(Πi,j) =

N
∑

i

Ki
∑

j

UT
i,j(Πi,j)+GC

i,j(Πi,j)−CC
i,j(Πi,j) (7)

• Social ACCof team by using policyΠ

ACC(Π) =
N

∑

i

Ki
∑

j

ACCci,j(Πi,j) (8)

Based on the above, we would ideally want to show that (1) minimizing EI with each
event leads to improved coordination utility for the team, and that (2) this, in turn, leads
to improved overall task performance of the team (greater social utility). The first part is
in some sense already given, when we use the FMQ framework. Aslong as its conditions
hold, we can expect individual rewards to be maximized (i.e., the coordination utility
will be greater individually). However, the second part is more challenging.

It is possible to show, that if the coordination costs for theteam are minimized (i.e.,
the sum of coordination costs for all robots is minimized), then the coordination utility
of the team is greater (Lemma 1).

Lemma 1. TheCoordination Utilityfor policyΠ′ is better thanCoordination Utilityfor
policyΠ′′ if Social ACCfor Π′ is lower thanSocial ACCfor Π′′.

ACC(Π′) < ACC(Π′′) =⇒ UC(Π′) > UC(Π′′)

Proof. For space reasons, we provide a proof sketch. See [3] for formal proof. The in-
tuition for the lemma’s truth is as follows. IfACC(Π′) < ACC(Π′′), then necessarily
(by a sequence of rewritings),Ia(Π′) + CC(Π′) < Ia(Π′′) + CC(Π′′). This in turn im-
plies thatIp(Π′)−CC(Π′) > Ip(Π′′)−CC(Π′′). From the definition ofGC

i,j(α) above
(Eq. 6), we therefore haveGC(Π′)−CC(Π′) > GC(Π′′)−CC(Π′′), which means that
UC(Π′) > UC(Π′′).



Social (overall) utility is defined asU(Π) = UT (Π) + UC(Π). The question there-
fore becomes under what conditions does an improved coordination utility policy leads
to improved social utility; i.e., when doesUC(Π′) > UC(Π′′) ⇒ U(Π′) > U(Π′′)? We
consider several cases.

Case 1.UT
i (Π′) ≥ UT

i (Π′′). Here, the conflict solving methods do not affect individ-
ual task utility (or make it better), forall robots. In this case it is easy to see that the accu-
mulated task utility is greater, and the greater task and coordination utilities, combined,
result in greater overall utility.

Suppose, however, that one robot’s task utility under the policy Π′ is actually made
worse than other the competing policy. Does that automatically mean that the overall
utility for the team is worse when usingΠ′? The answer is no; the robot might in fact be
sacrificing its own task utility to maximize the team’s (as collaborating robots might be
expected to do [6]). The question is whether its sacrifice is compensated for by greater
rewards to others.

Case 2.UT
i (Π′) < UT

i (Π′′), butUT (Π′) ≥ UT (Π′′). For all reduction in task utility
made by the choice of conflict solving method exists number ofcompensations in other
conflicts of other robots in the team.

Finally, it might still be possible for the team to perform better with policyΠ′ even
when task performance is made worse.

Case 3.UT (Π′) < UT (Π′′), but UT (Π′′) − UT (Π′) < UC(Π′) − UC(Π′′). In the
case where the loss in team task utility from using policyΠ′ is smaller than benefit in
team coordination utility that policyΠ′ provides, it is still true thatUT (Π′)+UC(Π′) >

UT (Π′′) + UC(Π′′).
Tying these three cases above together, we now state the concluding theorem:

Theorem 2. EI is a good individual reward for total social utility,if (i) either case 1,
2, or 3 above hold; and (ii) EI minimization policy leads to maximal coordination utility
UC for the team.

Proof. See discussion above.

4. Experiments

We now turn to briefly survey a subset of empiric results supporting the use of EI and the
stateless Q-learning algorithm in multi-robot team foraging. Here, robots locate target
items (pucks) within the work area, and deliver them to a goalregion. As was the case in
Rosenfeld’s work [12], we used the TeamBots simulator [2] torun experiments. Team-
bots simulated the activity of groups of Nomad N150 robots ina foraging area that mea-
sured approximately 5 by 5 meters. We used a total of 40 targetpucks, 20 of which where
stationary within the search area, and 20 moved randomly. For each group, we measured
how many pucks were delivered to the goal region by groups of 3,5,15,25,35,39 robots
within 20 simulated minutes. We averaged the results of 16–30 trials in each group-size
configuration with the robots being placed at random initialpositions for each run.

We compare the EI method with two other coordination algorithm selection meth-
ods: Random coordination algorithm selection (RND), and tothe method of Rosenfeld
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Figure 1. Experiment results, time limit 20 minutes.

et al. (ACIM). All of these (EI, RND, ACIM) dynamically select between several fixed
coordination algorithms, discussed in [12]: Noise (which essentially allows the robots
to collide in their motion uncertainty does not prevent collision), Aggression [14], and
Repel, in which robots back off a variable distance to avoid an impending collision.

Figures 1(a)–1(d) show a subset of results. In all, the X axismarks the group size,
and the Y axis marks the number of pucks collected. Figure 1(a) shows that given no
resource limitations, the EI is just as good as ACIM, despitethe fact that EI does not use
off-line learning. When resource (fuel in this case) limitations are applied (Figure 1(b)),
each method spends 1, 3 or 5 units per step (see number inside of brackets after name
of method). The EI method can performs as good as any other (given aCCC function
which gives time a weight of 70% and fuel 30%), or as worse as any other (with time
weight of 100%, i.e., when ignoring fuel costs). When resource limits are known a-priory
the ACIM method provides the same result (or slightly superior) as EI (Figure 1(c). But
when these resource limits are unknown(Figure 1(d)), and optional methods spend more
than advertised (in this case, aggression spend 0.5 extra units of fuel per step), the EI
method leads to significantly improved results. In both of the two last figures, theCCC

gave time a weight of 70% and fuel 30%. The methods for selection were Noise(5),
Repel(5) and Aggression(5.5).



5. Summary
This paper examined in depth the success of previously-report heuristic methods in im-
proving loose coordination in teams, by selecting between different coordination meth-
ods. We have shown that these methods can be cast as solving a multi-agent reinforce-
ment learning problem (specifically, a one-stage MDP game),and that existing heuristics
can be viewed as rudimentary reward functions.

We have argued for a more principled investigation of appropriate reward functions
for this framework, and presented a novel reward function, called Effectiveness Index,
which essentially measures the velocity in which resourcesare spent when reestablishing
conflicts. We analytically examine the cases underwhich theuse of this reward function
leads to improved performance, and then empirically shown that indeed it leads to better
performance then existing methods of adaptation. We plan toextend our analysis and
empiric investigation to examine additional domains and team tasks.
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