
Efficient Hybrid Algorithms for
Plan Recognition and

Detection of Suspicious and
Anomalous Behavior

Dorit Avrahami-Zilberbrand
Computer Science Department

Ph.D. Thesis

Submitted to the Senate of Bar-Ilan University
Ramat Gan, Israel

March 2009

This work was carried out under the supervision of Prof. Gal A. Kaminka,
Computer Science Department, Bar-Ilan University.

Dedication

This dissertation is lovingly dedicated to my parents, Gila and Magid Avra-
hami, who raised me to be the person I am today. Their unconditional love,
guidance, encouragement and support have sustained me throughout my life.
Thank you for everything. I love you!

i

Acknowledgments

I would like to express my deep gratitude to my thesis advisor, Prof. Gal
A. Kaminka, for his encouragement, for thoughtful guidance, for his support
and understanding during the course of research, the best advisor I could
have asked for. This work could not have been carried out without him.

I would also like to thank all of the members of the Maverick research
group, especially to Efi Merdler for his assistance.

Also, I wish to express my gratitude to my husband Nadav, who has
been a great source of motivation and inspiration. I thank him for his love,
patience and practical assistance in my research. I thank our daughter Noa,
who has been a source of great happiness and joy.

I wish to thank my family, for providing a loving environment for me.
To my parents, Magid and Gila, my sister Ronit and my brother Tomer, for
always being there when I needed them.

Finally, I would like to express special gratitude to Batya and Menahem
Zilberbrand for their support.

This research was carried out with partial support by the Israeli Ministry
of Commerce AVNET Consortium, and the Israel Science Foundation Grant
#1357/07.

ii

Abstract

Plan recognition is the process of inferring other agents’ plans and goals based
on their observable actions. Modern applications of plan recognition, in par-
ticular in surveillance and security raise several challenges. First, a number
of key capabilities are missing from all but a handful of plan recognizers: (a)
handling complex multi-featured observations; (b) dealing with plan execu-
tion duration constraints; (c) handling lossy observations (where an obser-
vation is intermittently lost); and (d) handling interleaved plans. Second,
essentially all previous work in plan recognition has focused on recognition
accuracy itself, with no regard to the use of the information in the recogniz-
ing agent. As a result, low-likelihood recognition hypotheses that may imply
significant meaning to the observer, are ignored in existing work. In this work
we present set of efficient plan recognition algorithms that are capable of han-
dling the variety of features required of realistic recognition tasks. We also
present novel efficient algorithms that allow the observer to incorporate her
own biases and preferences—in the form of a utility function—into the plan
recognition process. This allows choosing recognition hypotheses based on
their expected utility to the observer. We call this Utility-based Plan Recog-
nition (UPR). We demonstrate the efficacy of the techniques described above,
by applying them to the problem of detecting anomalous and suspicious be-
havior. The system contains the symbolic plan recognition algorithm, which
detects anomalous behavior, and the utility-based plan recognizer which rea-
sons about the expected cost of hypotheses. These two components form a
highly efficient hybrid plan recognizer capable of recognizing abnormal and
potentially dangerous activities. We evaluate the system with extensive ex-
periments, using real-world and simulated activity data, from a variety of
sources.

iii

Contents

1 Introduction 1
1.1 An Efficient Hybrid Model for Plan Recognition 3

1.1.1 SBR: Efficient Symbolic Plan Recognition 4
1.1.2 UPR: Efficient Utility-based Plan Recognition 5
1.1.3 Detecting Multi-Agent Dynamic Groups 7

1.2 Detecting Anomalous and Suspicious Behavior 8
1.3 Dissertation Organization . 9
1.4 Publications . 11

2 Related Work 12
2.1 Plan Recognition . 12

2.1.1 Symbolic and Hybrid-Symbolic Approaches 12
2.1.2 Uncertainty in Plan Recognition Hypotheses 14
2.1.3 Utility-Based Approaches 16
2.1.4 Dynamic Tracking of Multi-Agent Teams 18

2.2 Detecting Anomalous and Suspicious Behavior 19

I An Efficient Hybrid Model for Plan Recognition 21

3 SBR: Efficient Symbolic Plan Recognition 23
3.1 Fast Symbolic Plan Recognition: The Basics 24

3.1.1 The Plan Library . 24
3.1.2 Efficient Matching . 27
3.1.3 Current-State Hypothesis 30

3.2 Reducing Matching Space Complexity: Compact FDT 33
3.3 Accounting for Complex Temporal Behaviors 38

3.3.1 Managing Durations 38

iv

CONTENTS

3.3.2 Interleaved Plans . 39
3.3.3 Missing Observations 41

3.4 Summary: SBR Improvements 42

4 UPR: Efficient Utility-based Plan Recognition 44
4.1 UPR in Influence Diagrams 44

4.1.1 A Bayesian Model of Plan Recognition 45
4.1.2 Plan Recognition Influence Diagram 46
4.1.3 Complexity Analysis 50

4.2 A Hybrid UPR Technique . 52
4.2.1 Computing the Expected Utility of an Hypothesis . . . 52
4.2.2 Efficient UPR Hybrid Algorithms 57
4.2.3 Discussion . 60

5 Recognizing Multi-Agent Dynamic Groups 62
5.1 Dynamic Hierarchy Group Model 62
5.2 Complexity Analysis . 65
5.3 An Illustrative Application . 68

II Detecting Anomalous and Suspicious Behavior 71

6 Detecting Anomalous Behavior 73
6.1 Experiments Setup . 74

6.1.1 The Learning Algorithm 74
6.1.2 Performance Measurements 77

6.2 CAVIAR Data . 78
6.2.1 Simple Abnormal Behavior 79
6.2.2 Duration . 86

6.3 RAFAEL Data . 90

7 Detecting Suspicious Behavior 94
7.1 Leaving Unattended Articles 96
7.2 Catching a Dangerous Driver 97
7.3 Air-Combat Environment . 101

8 Future Directions and Final Remarks 104
8.1 Summary of Key Contributions 104
8.2 Future Directions . 105

v

CONTENTS

References 106

vi

List of Figures

1.1 Thesis structure. 10

3.1 Example plan library. Circled numbers denote timestamps (Sec-
tion 3.1.3). 26

3.2 Example FDT with plan library. 28
3.3 FDT with exponential size. Solid arrows denote true values and

dashed arrows denote false values 34
3.4 Compact FDT for the same plan library as in figure 3.3. Solid

arrows denote true values, dashed arrows denote false values, and
middle arrows denote ‘*’ branch 35

3.5 Summary of the improvements to the basic symbolic plan recog-
nition model introduced in Chapter 3. 43

4.1 An example of Bayesian Network, Competition between shopping
and Robbing (taken from [23]). Slot-fillers are in Bold. 47

4.2 An example of Influence Diagram for the Competition between
shopping and Robbing (dashed arrows denote utilities arcs) . . . 49

4.3 A running example of Influence Diagram for the Competition be-
tween shopping and Robbing (dashed arrows denote utilities arcs) 51

4.4 An example plan library. Recognition time-stamps (example in
text) appear in circles. Costs appear in diamonds. 54

4.5 Efficient UPR Example. 60

5.1 Example Dynamic Hierarchy Group Model noted with G. 63
5.2 Example of the process of creating Dynamic Hierarchy Group

Model. The Number on the node denotes number of agents
belong to this group. 66

5.3 An example of plan library. 67

vii

LIST OF FIGURES

6.1 Anomalous Recognition System. Inputs and outputs for the sys-
tem are in dashed arrows. 74

6.2 Result of running naive learning algorithm on one trajectory . . . 75
6.3 Demonstrating position overlap. Added position overlap for square

number 5. 76
6.4 A typical frame of image sequence in CAVIAR Project 78
6.5 Three Trajectories: Legal path (Curved Path A), suspicious path

(Curved Path B), and return path (U-Turn) from CAVIAR data.
The arrow points at the starting point. 80

6.6 True positive vs. false positives on CAVIAR data. 81
6.7 Precision and recall on CAVIAR data. 82
6.8 Time for detection suspicious path on CAVIAR data. 83
6.9 Too early detection and too late detection on CAVIAR data. . . 84
6.10 Time for detecting U Turn on CAVIAR data. 85
6.11 U Turn on CAVIAR data. 86
6.12 Precision and recall for U Turn versus time on CAVIAR data. . . 87
6.13 Trajectory with waiting time. 88
6.14 Time to detect standing in one place versus Duration Relaxation. 89
6.15 Number of suspects in the duration experiment. 90
6.16 Detecting U-Turn on AVNET data. 92
6.17 Detecting standing for long time on AVNET data 93

7.1 Suspicious Recognition System. Inputs and outputs for the sys-
tem are in dashed arrows. 95

7.2 Leaving unattended articles: Probabilities and Costs 98
7.3 Simulated trajectories for drivers. 99
7.4 Confusion error rates for different thresholds for dangerous and

safe drivers. 100
7.5 Air-Combat Environment. Two types of opponents. 102

viii

List of Algorithms

1 FormTree(Instances, Weights,NotTested) 30
2 PropagateUp(Node v, Plan Library g, Time-stamp t) 32
3 IsConsistent(Node v, Plan Library g, Time-stamp t) 32
4 FormCompactTree(Instances, Weights, NotTested) 36
5 Matching(Feature Tree Node v, Observed Features List F ,

Plan Library L, Feature Tree fdt) 37
6 PropagateUp(Node v, Plan Library g, Time-stamp t) 40
7 calcDuration(Node v, Time-stamp t) 40
8 AdvanceTagged(Node v,Timestamp t, Plan Library g) 43
9 CalcProbAndUtils(SBR t − 1 results W ,SBR t results X, Plan

Library g, Time-stamp t) . 58
10 PropagateUpAndDown(SBR t − 1 path v, Plan Library g, Time-

stamp t, End Plan r) . 59
11 CalcDown(probability P , probability p, expected utility E,utility

u,Plan B, Plan Library g, Time-stamp t) 59
12 GroupDetection(Plan Library p) 64
13 UpdateGroup(Group Hierarchy Node groupNode, Time-stamp t,

Observation obsrvArr) . 65
14 CheckSuspiciousBehavior(Group Hierarchy Node groupNode) . . . 69

ix

Chapter 1

Introduction

Plan recognition focuses on mechanisms for recognizing the unobservable
state of an agent, given observations of its interaction with its environment.
Plan recognition has been extensively investigated in the past two decades
(e.g., [22,23,31,51,70,87]). When applied to observations of human activity,
it is also referred to as activity recognition (e.g., [19, 27,42,55,64]).

Plan- or activity- recognition is used in a wide range of applications, such
as intrusion detection applications [31,32], virtual training environments [87],
visual monitoring [18] and detection of suspicious or anomalous behavior
[66,70,91].

Most approaches to plan recognition utilize a plan library, which en-
codes the behavioral repertoire of a typical observed agent. Observations
are matched against this plan library in sequence, and resulting recogni-
tion hypotheses are often ranked according to their likelihood or via some
other ranking method. In general, plan recognition libraries have a complex
structure, that encode (explain) a large number of possible observation se-
quences. During run-time, an observation sequence is matched against the
plan-library, and matching sequences within the plan library are treated as
plan recognition hypotheses.

Modern applications of plan recognition challenge existing work in this
area. In particular, recent applications of plan recognition to human activity
recognition monitoring and surveillance have raised several challenges:

• First, a number of key capabilities are missing from all but a handful
of plan recognizers. Most existing investigations, for instance, ignore
the computational cost of matching complex multi-feature observations

1

against all possible plan-steps in the plan library (a non-trivial task).
Moreover, most recognizers do not allow recognition based on duration
of behaviors, nor do they address recognition despite intermittently
lost observations. Finally, most existing work ignores recognition of
interleaved goals. We survey previous work in detail in Chapter 2.

• Second, essentially all plan recognition algorithms are task-neutral.
They generate a list of hypotheses—typically ranked by decreasing
likelihood—and leave it to the decision-making component to exam-
ine the hypotheses and draw a conclusion leading to taking action.
This is a classic generate-and-test design.

But as generating the full list of hypotheses is expensive, many plan
recognizers only return a handful of the top-ranked hypotheses (e.g.,
the top three likely hypotheses). This necessarily causes these plan
recognizers to ignore the significance of hypotheses to the observer. As a
result, low-likelihood recognition hypotheses that may imply significant
danger or opportunity to the observer, are ignored.

For instance, suppose we observe a rare sequence of unix commands
that can be explained by for some plan I or for a more common plan
L. Most plan recognition systems will prefer the most likely hypothesis
L, and ignore I. Yet, if the expected utility (risk) of I for the observer
is high (e.g., if I is a plan to take down the computer system), then
that hypothesis should be preferred when trying to recognize suspicious
behavior. If I has expected utility that is very low for a malicious user,
then L may be better.

• Finally, there has been very little work on extending these single-agent
plan recognition frameworks to multi-agent scenarios. Plan recognition
with multi-agent settings can be performed, in principle, by treating
agents as independent, and recognizing the plan of each agent sepa-
rately. However, some scenarios require agents to participate in dy-
namic coordinated tasks, where team membership changes over time.
Tracking individual agents independently fails to recognize a team joint
goal and activities [50]; it will thus fail to capture recognizing the be-
havior of agents with respect to their group.

In the first part of this dissertation, we address the challenges listed above.
In Chapter 3 we build on our previously published work [4, 5], to create a

2

1.1 An Efficient Hybrid Model for Plan Recognition

new comprehensive symbolic plan recognizer that is capable of handling the
variety of features required of realistic recognition tasks. To the best of
our knowledge, this recognizer has the fastest plan-recognition algorithms
today. We then use it as a basis for a hybrid recognizer which reasons about
the expected utility of hypotheses (Chapter 4), and thus takes the expected
costs (and gains) of an hypothesis into account. The symbolic recognizer also
serves as the basis for a multi-agent plan-recognition framework (Chapter 5),
which allows tracking the relationships between agents.

To demonstrate the efficacy of the techniques described above, in the sec-
ond part of the work we apply them to the problem of detecting anomalous
and suspicious behavior. The system we describe contains two key compo-
nents: The symbolic plan recognizer (Chapter 3) is used to detect anom-
alous behavior (Chapter 6), and the utility-based plan recognizer (Chapter
4) which reasons about the expected cost of hypotheses is used to detect sus-
picious behavior (Chapter 7). Together, the two components form a highly
efficient hybrid plan recognizer capable of recognizing abnormal and poten-
tially dangerous activities.

We evaluate the two components in extensive experiments, using real-
world and simulated activity data, from a variety of sources. We show that
the techniques are able to detect both anomalous and suspicious behavior,
while providing high levels of precision and recall (i.e., small levels of false
positives and false negatives).

Below we discuss the contributions of the dissertation in greater detail. In
Section 1.1 we describe our contributions to the problem of plan recognition.
In Section 1.2 we introduce our work on detecting anomalous and suspicious
behavior.

1.1 An Efficient Hybrid Model for Plan Recog-

nition

This section discusses the contributions of the dissertation in the area of
plan recognition. We begin by discussing the improvements for SBR, efficient
symbolic plan recognition 1.1.1. Then we discuss the contributions of UPR,
utility based plan recognition in Section 1.1.2. And then, our work in multi-
agent framework 1.1.3.

3

1.1 An Efficient Hybrid Model for Plan Recognition

1.1.1 SBR: Efficient Symbolic Plan Recognition

Symbolic plan recognizers generate hypotheses as to the unobservable state
of an agent consistent with the observations, with no ranking (probabilistic
or otherwise). Because they provide no ranking, symbolic plan recognizers
are often viewed as inadequate for modern applications. Indeed, even early
instantiations of symbolic recognizers have utilized some heuristics to rank
hypotheses, e.g., [50, 51,87].

We posit that highly efficient symbolic recognizers can in fact be very
useful. First, in applications of detecting anomalous behavior, a symbolic
recognizer can quickly discard all invalid hypotheses without wasting effort
on computing their likelihood or value. Second, symbolic plan recognizers
can be used as a basis for hybrid plan recognition systems (see [31,33,49,77]).
Here, the symbolic recognizer is used to efficiently rule out zero-likelihood (or
zero-value) hypotheses. Thus the more computationally-intense probabilistic
or utility-based reasoning process focuses only on valid hypotheses.

However, to support modern applications of plan recognition, a number of
capabilities are needed. These are not present in most —if not all— symbolic
plan recognizers.

First, many applications have complex multi-feature observations, rather
than a single atomic feature. Most existing investigations ignore the com-
putational cost of matching complex multi-feature observations against all
possible plan-steps in the plan library, this is non-trivial task, and should be
taken into account. In our earlier work [4, 5], we presented specialized data-
structure, a matching decision-tree called FDT (Feature Decision Tree). The
FDT is generated automatically once prior to execution, and it efficiently
matches multi-feature observations, to the plan library. Clearly, the use of
the FDT leads to very significant improvements in the matching time com-
pared to previous work. However, its space complexity is exponential in the
number of features.

Second, previous investigations typically do not utilize information on
the execution duration of plans. It is possible to explicitly reason about
time, and thus for example demand minimum and maximum durations for
each plan. This information can be used to rule out hypotheses that match
instantaneous observations, but whose hypothesized duration does not match
observations over time.

Third, most previous investigations are not capable of coping with agents
that pursue multiple goals. The models consider multiple goals only in se-

4

1.1 An Efficient Hybrid Model for Plan Recognition

quence, where the observed agent finishes a series of plan-steps in order to
finish one goal, and only then moves on to pursuing another goal. While se-
quential goals are certainly common in some domains, in many others agent
can start with one goal, then move to another goal, and finally return to
accomplish the first goal, from the point it has paused. One simple example
of this is where we attempt to recognize the goal of a web user, who stops in
the middle of navigating a web page and jumps to a news site, only to return
to her previous work afterwards.

An ideal plan recognition system would be able to address the deficiencies
above, taking into account that observations might be lost, due to sensory
failures.

Specifically, extending SBR, makes the following contributions: (a) re-
ducing space complexity of matching complex multi-featured observations
to the plan library; (b) dealing with plan execution duration constraints; (c)
handling lossy observations (where an observation is intermittently lost); and
(d) handling interleaved plans (where an agent interrupts a plan for another,
only to return to the first later). This symbolic model is highly efficient and
will be used later as a basis for a hybrid symbolic-probabilistic recognizer,
and for the multi-agent framework.

The recognition algorithms we develop follow in the footsteps of [4, 5] in
their focus on efficiency. They rely on lazy commitment to hypotheses, to
avoid computation of hypotheses with every step (as other algorithms do,
e.g., [33]). Instead, they use linear-time bookkeeping with every observation,
which allows extraction of hypotheses only as needed.

In the second part of the dissertation (Part II), we demonstrate the ca-
pabilities of these algorithms in the application of detecting anomalous be-
havior. We evaluate the system with extensive experiments, using real-world
data from machine vision trackers, which track movements of people, and
report on their coordinate positions.

1.1.2 UPR: Efficient Utility-based Plan Recognition

Essentially all plan recognition techniques ignore the decision processes of the
recognizing agent, and focus on probabilistic or heuristic ranking of recogni-
tion hypotheses, with no regard to the task for which knowledge of the plans
of others is needed. As a result, low-likelihood recognition hypotheses that
may carry significant gains or costs to the observer, might be ignored.

For instance, suppose we observe a sequence of Unix commands that can

5

1.1 An Efficient Hybrid Model for Plan Recognition

be explained by some plan I or by a more common plan L. Probabilistic
plan recognition systems will prefer the most likely hypothesis L, and ignore
I. This, in fact would be a better hypothesis for general recognition. Yet, if
the expected cost (risk) of I for the observer is high (e.g., if I is a plan to
take down the computer system), then that hypothesis should be preferred
when trying to recognize suspicious behavior; the task biases the ranking of
hypotheses.

We propose a novel plan recognition approach, utility-based plan recogni-
tion (UPR), in which the observer folds its biases and preferences—in the
form of a utility function—into the plan recognition process itself. Using
UPR, the recognition process ranks recognition hypotheses based on their
expected utility to the observer. This allows the observer, for instance, to se-
lect hypotheses based on their expected costs (e.g., in the case of a risk-averse
observer), or expected gains.

We present a formal procedure for constructing Plan Recognition Influ-
ence Diagrams (PRID), based on Charniak and Goldman’s [23] procedure
for constructing Bayesian Networks. Unfortunately, while in principle UPR
can be carried out via influence diagrams, such reasoning is intractable in
the general case [41, 67], and specifically in the types of influence diagrams
considered for UPR (see Section 4.1.3 for a detailed discussion).

We therefore present an efficient UPR recognizer, able to carry out plan
recognition in worst-case complexity of O(NDT), where N is the size of a
hierarchical plan library, D is the depth of the library, and T is the number
of observations. This complexity is achieved by using a hybrid approach
that combines an efficient symbolic plan recognizer [5, 12], with a decision-
theoretic inference built on top of a hierarchical Markov model. We restrict
these algorithms to the case of keyhole recognition, where the observed agent
does not modify its behavior based on the knowledge that it is being observed.

In the second part of the dissertation (Part II), we demonstrate the novel
capabilities of UPR, and its efficient implementation as described above. We
tested the capabilities of our algorithms in three different recognition tasks in
the application of suspicious behavior. The domain for the first task consisted
of recognizing passengers that leave articles unattended, as in the example
above. In the second task we show how our algorithms can catch a dangerous
driver that cuts between two lanes repeatedly. The last experiment intends
to show how previous work, which has used costs heuristically [87], can now
be recast in a principled manner. All of these examples show that we should
not ignore the observer biases, since the most probable hypothesis sometimes

6

1.1 An Efficient Hybrid Model for Plan Recognition

masks hypotheses that are important for the observer.

1.1.3 Detecting Multi-Agent Dynamic Groups

This work takes first steps to address the challenge of plan recognition for
dynamic multi-agent teams. Most previous work has focused on recogniz-
ing specific (and limited) coordinated behaviors and does not deal with the
problem of identifying interactions between groups of agents. In contrast,
this work utilizes the information from group of agents, to identify the inter-
actions between groups of agents, using a Dynamic Hierarchical Group Model
(DHGM) that tracks the dynamic grouping and un-grouping of agents.

There are behaviors that can be captured only when tracking individuals
with respect to the group and not as individuals. For example, identifying
passenger in the airport that behaves differently from other passengers in
the same group. While reasoning about individual agents in a multi-agent
framework is expensive, we reduce this complexity by utilizing the DHGM
that encapsulate shared data of agents in the same group.

Although multiple frameworks have been developed for single-agent plan
recognition, there has been less work on extending these frameworks to
multi-agent scenarios. Plan recognition with multi-agent settings can be per-
formed, in principle, by treating agents as independent, and recognizing the
plan of each agent separately. However, there are number of problems with
this method in complex multi-agent scenarios. First, some scenarios require
agents to participate in dynamic teams where team membership changes over
time. Tracking individual agents independently fails to recognize a team joint
goal and activities [86]; it will thus fail to capture recognizing the behavior
of agents with respect to their group.

Previous work has shown that given a model of hierarchical relationship
between agents, one can recognize team plans, involving multiple agents [44,
46,49]. However, these previous work focused specific social structures, where
agents form teams based on a-priori agreements as to specific plans. In order
to recognize team plans in these previous methods, the monitoring agent
must first know which plans are ideally to be agreed upon. In contrast, in
our work we do not have static social structure that is given in advanced,
but instead use the plan library to identify dynamically changing structure
of the groups. For example, a group of passengers in the airport may seem
like one group when standing in the security check line, and afterward when
splitting to two groups, the organizational structure need to be modified.

7

1.2 Detecting Anomalous and Suspicious Behavior

We propose a method for tracking the dynamically changed structures of
groups of agents. This information can be used in several ways. First, iden-
tifying an agent that behave differently from other agents in the same group
(which can serve as a basis for recognizing suspicious behavior). Second, we
can understand better the agent actions by saving the history of its group.

For example consider the queue-cutting problem, where two friends stand
in a specific position in the security line. One of them goes to the restrooms.
When she returns, she joins her friend in the security line, rather than at the
end of the line. If we would not save the history of her group, we may consider
this person to be a suspect of cutting the line. However, when knowing the
history of the group, we can understand better its actions.

This work proposes initial steps towards a method for tracking groups
and changes in these groups (merging and splitting) by saving information
on the common plan that each group executes. To do this, we use a Dynamic
Hierarchical Group Model (DHGM) that indicates the connection between
agents. This will allow us to know the agent group history, and to reduce
complexity by saving for each sub group the same plan library.

1.2 Detecting Anomalous and Suspicious Be-

havior

This part of the work discusses the application of detecting anomalous and
suspicious behavior. We utilize the new model for plan recognition presented
in the first part to detect anomalous and suspicious behavior.

There have been several attempts at utilizing plan recognition for recog-
nition of suspicious, erroneous, or anomalous behavior, e.g., [18,25,28,32,56,
66,91]. These have mostly operated under the assumption that a plan library
is available that covers this intended negative behavior, and thus recognition
of hypotheses implying such behavior is treated no differently from recog-
nition of hypotheses implying no suspicion. Recently, a different approach
has been taken by several researchers in which the plan library is used in
an inverse fashion. The plan library is limited to covering only positive be-
havior. When a plan-recognizer is unable to match observations against the
library (or generates hypotheses with very low likelihood), an anomaly is
announced [27,55].

Second, essentially all previous work on recognizing anomalous plans fo-

8

1.3 Dissertation Organization

cuses on probabilistic ranking of hypotheses, and ignores the utility of actions
to the observer. As a result, low-likelihood recognition hypotheses that may
imply significant danger are ignored. For instance, a sequence of observations
may indicate a person leaving her bag behind. This is rare—but not necessar-
ily negative—behavior (some would say, especially among young children and
adult professors), and should not always be treated as a suspicious behavior.
It is the potential impact of this act that makes the act suspicious.

This work addresses these challenges. We use the efficient algorithms for
plan recognition introduced in the first part (Part I) of the work, to consider
the problem of detecting anomalous and suspicious behavior.

First, we use the symbolic plan recognitions algorithms for detecting ab-
normal activity (the plan library represent normal behavior; any activity
which is not recognized is abnormal). For example, the normal activity
model may include usual movements of people in the airport. The Symbolic
algorithm will detect abnormal patterns like walking in the wrong direction,
taking more than usual amount of time to get to the security check. The SBR
algorithms introduced in the first part, handle the variety of features required
for this domain: recognition based on duration, handling lossy observation
streams, etc.

Second, we use the efficient hybrid utility based plan recognizer, to de-
tect suspicious behavior in three different tasks. The domain for the first
task consisted of recognizing passengers that leave articles unattended, as in
the example above. In the second task we will show how our algorithms can
catch a dangerous driver that cuts between two lanes repeatedly. The last
experiment intends to show how previous work, which has used costs heuris-
tically [87], can now be recast in a principled manner. All of these examples
show that we should not ignore the observer biases, since the most probable
hypothesis sometimes mask hypotheses that are important for the observer.

1.3 Dissertation Organization

This dissertation is constructed of 9 chapters, organized in two main parts
(see Figure 1.1). This chapter constitutes the introduction to this thesis. The
next chapter surveys the related work. Chapters 3–5 constitute Part I of the
dissertation, which deals with new efficient algorithms for plan recognition.
Chapters 6–7 constitute Part II of the dissertation, which deals with detecting
anomalous and suspicious behavior. Chapter 8 concludes and discusses future

9

1.3 Dissertation Organization

work.

Part I: An Efficient Hybrid Model for Plan Recognition

SBR: Efficient Symbolic Plan Recognition

UPR: Efficient Utility-based Plan Recognition

Detecting Multi Agents Dynamic Groups

Part II: Anomalous and Suspicious Behavior Recognition

Detecting Anomalous Behavior

Detecting Suspicious Behavior

Chapter 1: Introduction

Chapter 2: Related Work

Chapter 8: Future Directions and Final Remarks

Figure 1.1: Thesis structure.

10

1.4 Publications

1.4 Publications

Subsets of the results that appear in this dissertation were published in the
proceedings of the following refereed journals, conferences and workshops:

• Dorit Avrahami-Zilberbrand, Gal A. Kaminka and Hila Zarosim. Fast
and complete plan recognition: Allowing for duration, interleaved exe-
cution, and lossy observations. In Proceedings of the IJCAI Workshop
on Modeling Others from Observations (MOO-05), 2005. [12].

• Dorit Avrahami-Zilberbrand and Gal A. Kaminka. A Hybrid symbolic-
probabilistic plan recognizer: Initial steps. In Proceedings of the AAAI
Workshop on Modeling Others from Observations (MOO-06), 2006. [6].

• Dorit Avrahami-Zilberbrand and Gal A. Kaminka. Incorporating ob-
server biases in keyhole plan recognition (efficiently!). In Proceedings of
Twenty-Second National Conference on Artificial Intelligence (AAAI-
07), Vancouver, British Columbia, 2007. [7].

• Dorit Avrahami-Zilberbrand and Gal A. Kaminka. Utility-based plan
recognition: An extended abstract (short paper). In Proceedings of
the Sixth International Joint Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS-07), 2007. [9].

• Dorit Avrahami-Zilberbrand and Gal A. Kaminka. Towards dynamic
tracking of multi-agents teams: An initial report. In Proceedings of the
AAAI Workshop on Plan, Activity, and Intent Recognition (PAIR-07),
2007. [8].

• Dorit Avrahami-Zilberbrand and Gal A. Kaminka. Fast symbolic plan
recognition. Submitted to Artificial Intelligence (AIJ), 2009. [10].

• Dorit Avrahami-Zilberbrand and Gal A. Kaminka. Incorporating Ob-
server Biases in Keyhole Plan Recognition (Efficiently!). Submitted to
Artificial Intelligence (AIJ), 2009. [11].

11

Chapter 2

Related Work

2.1 Plan Recognition

Plan recognition is the task of inferring the intentions, plans, and/or goals of
an agent based on observations of its actions. We begin by discussing sym-
bolic and hybrid approaches to plan recognition (Section 2.1.1), then prob-
abilistic approaches (Section 2.1.2), then utility-based approaches (Section
2.1.3) and then multi-agent plan recognition (Section 2.1.4). For a compre-
hensive survey, see [22].

2.1.1 Symbolic and Hybrid-Symbolic Approaches

Symbolic plan recognition algorithms find hypotheses as to the current inten-
tion, goal, or plan of the agent, without considering the relative likelihood
of the hypotheses. Early work by Kautz [51] provided a formal theory of
plan recognition, focusing on symbolic methods. In this work the problem
is viewed as a deductive inference, and relies on a representation called ac-
tion taxonomy, where every observed action is a part of one or more “top
level plans”. The task of the plan recognition is to find minimal set of top
plans that explain the observations. However, this approach faces inherent
difficulties when applied to the complex, dynamic settings in which agents
are typically deployed. First, agents may take continuous (servo) actions,
intended to maintain some interaction with their environment (e.g., velocity
or heading). The actions in this case are not discrete and instantaneous, but
instead are composed of multiple continuous changes to approximate some
target function [65]. Modelling such actions using discrete operators is diffi-

12

2.1 Plan Recognition

cult at best. Second, since the input to classic plan recognition algorithms is
a stream of actions, it is difficult to incorporate an additional context that
may be observable, and may be affecting the internal decision-making of the
observed robot. For instance, an observed person may be of a certain height,
which is observable, but is certainly not an observed action—and is ignored
by Kautz’s method. Moreover, Kautz’s method does not account for the
duration of plan execution.

Several investigations have utilized multi-featured observations (also of
continuous actions), but did not address the efficiency of matching observa-
tions to the plan library, in contrast to our work: RESC [87] and RESL [50]
use a hierarchical representation (similar to what we use) to maintain a single
hypothesis (RESC) or multiple hypotheses (RESL) as to the current state of
an observed agent. Both algorithms ignore observation history in the current
state hypotheses, in contrast to our algorithms. Moreover, these algorithms
do not account for complex temporal reasoning (duration and interleaving).

Recently, there appeared a number of plan recognition techniques that use
a hybrid approach: An underlying symbolic recognizer is used to efficiently fil-
ters inconsistent hypotheses, passing them to a probabilistic inference engine,
which focuses on ranking recognition hypotheses. Indeed, the techniques de-
scribed in this work have been utilized with a hybrid recognizer that focuses
on recognizing the most costly hypotheses, in a decision-theoretical sense [7].

Geib et al. [33] developed PHATT, a hybrid recognizer, where a symbolic
algorithm filters inconsistent hypotheses before they are considered prob-
abilistically. PHATT assumes instantaneous, atomic actions, and takes a
generate-and-test approach: With each observation, the symbolic algorithm
generates a pending set of possible expected observations, which are matched
against the next observation to maintain correct state history hypotheses.
The size of the pending set may grow exponentially [31]. In contrast, our
work decouples the current state and state history queries, and incrementally
maintains hypotheses implicitly, without predicting impending observations.
The hypotheses are thus computed only when needed (when hopefully, many
of them have been ruled out). [33] describe a hybrid symbolic-probabilistic
plan recognition system, allowing for interleaved plans as well as some par-
tial observability. However, the system does not allow for taking durations
into account, nor does it address efficient matching of (lossy) multi-feature
observations.

YOYO* [49] is a hybrid probabilistic plan recognition algorithm for multi-
agent overhearing. The plan-library used by YOYO* included information

13

2.1 Plan Recognition

about the average duration of plan steps, which is used to calculate the
likelihood of an agent terminating one step and selecting another without
being observed to do so. In this, YOYO* addressed missing observations
(though their likelihood of becoming lost is assumed to be provided a-priori).
However, in contrast to our work, YOYO* did not address matching multi-
feature observations (where some features may be intermittently lost), nor
did it allow for interleaved plans.

Retz-Schmidt [77] describes a system that takes the image sequences of
the robotic soccer game, translates it to natural language, and translates it
to a plan library. There is a top down process of matching preconditions to
paths in the plan library. Then, the matching subgraphs are extracted and
compared with the next observation. If there are more than one hypothesis
there is a probabilistic inference. However, the approach does not allow for
interruptions of plans, nor for complex temporal reasoning.

2.1.2 Uncertainty in Plan Recognition Hypotheses

Typically, probabilistic plan recognition approaches, and other methods for
reasoning under hypothesis uncertainty, focus on determining the most likely
hypothesis, or set of hypotheses, as to the current and/or past states of
the agent. Previous work in this area has focused on utilizing specialized
structures and techniques that allows more efficient recognition, or more
expressive forms of plan recognition.

In contrast to all of these, we present non-probabilistic plan-recognition
algorithms: either symbolic, or decision-theoretic. In our presentation of
utility-based plan recognition, we present both a general method based on
influence diagram, as well as a highly efficient hybrid recognizer (which sac-
rifices some of the expressivity of the more general model).

The first principled approach for reasoning under uncertainty in recogni-
tion hypotheses was introduced by Carberry [21], who used Dempster-Shafer
belief functions. A different recognition system, but based on the same un-
derlying theory, was later used by Bauer et al. [13].

Charniak and Goldman [23] presented a different method for uncertainty
reasoning in plan recognition, based on probability theory. They presented
a formal procedure for constructing Plan Recognition Bayesian Networks, as
part of a story understanding system. Huber et al. [43] also generate proba-
bilistic belief networks from plan libraries encoding BDI procedures to solve
plan recognition problems. Later work [3,92] has utilized Dynamic Bayesian

14

2.1 Plan Recognition

Networks (DBN) for more complex plan recognition tasks. Applications to
visual surveillance also utilized belief networks (e.g., [38, 39]).

In all of these, the goal of the probabilistic methods is to calculate the
conditional probability of a set of variables (plans) given the values of an-
other set of variables (the observations). There are two types of techniques:
(a) exact inference (b) approximate inference. It is known that exact in-
ference of BN is intractable with respect to the network size [24], as it is
in DBN [16, 52]. Approximate inference, although scaling with the network
size, is NP-Hard with respect to the hard-bound of the estimates.

As recognition tasks grew in complexity, more efficient models were
needed. There have been much work that trades expressivity for run-
time, e.g., by introducing a Markov assumption into the models. Hid-
den Markov Models (HMMs) and extensions have been explored extensively
([17,20,29,35,37,62,75]) for plan recognition.

An HMM is the most simple case of DBN, where in each time slice there
is only a single state variable and an observation node. HMMs explicitly
represent uncertainty in observations. This model has been widely used in
traditional activity recognition for representing and learning characteristics
in simple activities (e.g., [80, 94]. The complexity of the HMM is O(TN2)
where N is the number of the states and T is the number of observations
(time steps). When the activities become more complex, or has long-term
temporal dependency, this model is not adequate.

Coupled HMMs [17] and Factorial HMM [34] are extensions of the HMM
with multiple hidden interacting chains. In these models, the size of the
belief state is exponential in the number of hidden chains. For this reason,
approximate inference techniques are required. These models can handle
complex activities, but are not sufficient to model hierarchical activities.

The AHMM [20], HHMM [29] and Layered HMM [69] are capable of
handling activities that have hierarchical structure. These models are used
in activity recognition applications such as learning and detecting activities
from movement trajectories [64] and inferring from raw GPS sensor user’s
daily movements ([55]). These models are using an approximate inference
algorithms for the recognition process. In our work, we follow in the footsteps
of HHMM in representing probabilistic information in the plan library (see
Section 4.2.1 for details).

Another class of extensions is exploring more complex formalisms for rea-
soning under uncertainty in plan recognition, in order to improve expressivity
while maintaining efficiency. There has been recent work on using Hidden

15

2.1 Plan Recognition

Semi-Markov Models (HSMMs) in recognizing plans and activities [27, 59].
Hidden Semi-Markov Models allow for providing probabilistic constraints
over the duration of plans, as well as the ability to detect anomalies. Recent
work has moved beyond DBNs and Markov models to use Conditional Ran-
dom Fields and similar techniques [88] which allow for greater expressivity.
Blayblock and Allen [15] provided a novel HMM-based model that allows
efficient exact reasoning about hierarchical goals. Hu and Yang [42] model
interacting and concurrent goals (which we do not focus on in this work). Bui
et al. [19] introduce a Hidden Permutation model that can learn the partial
ordering constraints in location-based activity recognition.

There are also probabilistic grammar approaches, which allow for efficient
exact inference: using a PCFG (Probabilistic Context-Free Grammar) to
represent observed agent behavior turns plan recognition into a parsing task
[73]. This method works by constructing a Bayesian network to represent
the distribution of parses trees. The PSDG (Probabilistic State-Dependent
Grammars [74]) extends the PCFG by allowing the probabilities production
to depend on the state of the observed agent. The major problem with
parsing as a model for plan recognition is that it does not address missing
observations nor interleaved plans.

Our work differs significantly from probabilistic approaches, as UPR rea-
sons about expected utility of hypotheses, rather than their likelihoods. All of
the probabilistic approaches presented here ignore the use of utilities. More-
over, none of these probabilistic approaches consider combining symbolic
inference to reduce complexity and to allow a richer class of plan recognition
inference, as we do.

2.1.3 Utility-Based Approaches

There have been a few investigations of the use of utilities or costs in plan
recognition. We distinguish previous work discussing the utility of others’
actions to themselves, and previous work discussing the utility of others’
actions to the observer.

Most existing work addresses utilities of the other agent’s actions to it-
self, in contrast to our work. There exist numerous investigations of (sequen-
tial) multi-agent decision-making, which models the entire decision-making
process of a rational agent reasoning about others (e.g., Recursive Model-
ing Method (RMM) [36, 67]; Multi-Agent Influence Diagrams [53, 83]; and
POMDP variants [14,76,89]). Such works focus on the decision making, and

16

2.1 Plan Recognition

deemphasize the recognition process—which is complex in itself—necessary
to establish the hypotheses underlying the decisions.

Mao and Gratch [57, 58] have explored explicit modeling of observed
agents’ utilities as part of ranking recognition hypotheses. Here, equally-
likely hypotheses are ranked based on the preferences of the observed agent,
as expressed in its own utilities, and under the assumption of rationality. Sim-
ilarly, Suzic [84] proposes a generic framework for tactical plan recognition us-
ing Multi-Entity Bayesian Networks (MEBN). MEBN also take into account
a-priori knowledge of the utility, given plans. Pynadath and Marsella [71,72]
have developed a model with decision-theoretic approach, including beliefs
about the modeling agent’s environment and recursive models of other agents.
They modified the POMDPs algorithm to take into account psychological
models instead of the assumption of perfect rationality. However, the agent
is seeking to maximize the expected reward of the observed agent behavior
as in a POMDP. Our work differs from theirs in that we consider the impact
of recognition hypotheses on the observer, not on the observed.

Indeed, there exists a conceptual difficulty with this approach. It can be
argued that the utility function of the observed agent is already accounted
for by the a-priori probabilities of the hypotheses: The fact that most people
do not consider planting a bomb to be an action with high expected utility
means that the a-priori probability of this (in the plan-library) is very low.
Thus, using the utility function of the observed may not even add mean-
ingful information to the recognition process. However, it may add to the
expressivity of the plan library.

Sukthankar and Sycara [81] present a cost minimization approach to be-
havior recognition, in which the recognizer uses behavior transition cost func-
tion to select the most parsimonious, minimal-cost, recognition hypothesis
explaining the human’s actions. However, the cost is to the observed agent,
transitioning between behaviors, and is intended to increase recognition co-
herence.

More closely-related work examined reasoning about the utility of recog-
nition hypotheses for the observer. Tambe and Rosenbloom [87] have exam-
ined the use of reactive plan recognition in simulated air-combat domains.
Here, the observing agent may face ambiguous observations, where some hy-
potheses imply extreme danger (a missile being fired towards the observer),
and other hypotheses imply gains (the opponent running away). RESC takes
a heuristic approach that prefers hypotheses that imply significant costs to
the observer (e.g., potential destruction). The relative likelihood of such hy-

17

2.1 Plan Recognition

potheses is ignored. While we are inspired by this work, we take a principled,
decision-theoretic, approach. In the algorithms we present, the likelihood of
hypotheses is combined with their utilities, to calculate the expected impact
on the observer. We show in Section 7.3 that this subsumes the earlier,
heuristic work.

2.1.4 Dynamic Tracking of Multi-Agent Teams

YOYO [46] is a symbolic approach for detecting disagreements among team
members. This work exploits knowledge on the social structures of the team
(called team hierarchy) to efficiently recognize splits in teams, where an agent
is executing a different plan than the rest of its team. In order to detect
disagreements, the monitoring agent must first know which plans are ideally
to be agreed upon. In contrast, in our work we do not have a static social
structure that is given in advanced, but a dynamically track structure of
groups which changes over the time. However, while we track splits in the
team, we cannot categorically determine that a split is an anomaly.

RESCteam [85] is a symbolic multi-agent plan recognition scheme which
represents only one coherent hypothesis. RESCteam can reason about the
assignment of agents to sub-teams, meaning that it does not require a static
team hierarchy as YOYO. However, it still uses information about the plans
expected to be agreed-upon.

Intille and Bobick [44] rely on coordination constraints among football
players to recognize team-tactics. They thus similarly focus on the interac-
tions between agents, rather than each agent as an individual. However, they
do not address dynamic grouping and ungrouping: The recognized interac-
tions are used to recognize the multi-agent plans that contain them.

Hongeng and Nevatia [40] recognizes multi agent events observed by a sta-
tic camera. Multi-agent event is represented by a number of action threads,
where each thread executed by a single actor. These action threads are re-
lated by temporal constraints generating a multi-agent event graph. They
thus similarly track dynamic interactions between agents, but they are re-
stricted to specific constraints between agents that are defined in the network.
Moreover, they can not detect dynamic splitting and merging of groups.

STABR [82] is a Team Assignment and Behavior Recognition model , re-
covering agent-to-team assignments where the mapping of agents into teams,
changes over time. This work thus also addresses the problem of behavior
recognition for teams with dynamic team composition. However, this ap-

18

2.2 Detecting Anomalous and Suspicious Behavior

proach is based on matching agent positions to pre-specified geometric for-
mation templates. In contrast, in our work we do not have static information
about groups, but detect dynamic splitting and merging of groups.

2.2 Detecting Anomalous and Suspicious Be-

havior

Applications to surveillance began to appear shortly after the introduction
of the basic method (e.g., [38]), and continue to this day (e.g., [18, 25, 27,
32,55,56,66,91]). There are two approaches: Detection based on anomalous
behavior; and detection based on suspicious behavior. Our work presents
efficient algorithms for both of these approaches.

The approach based on suspicious behavior is the most popular one. It
operates under the assumption that a plan library is available that covers
the intended negative behavior, and thus recognition of hypotheses implying
such behavior is treated no differently from recognition of hypotheses imply-
ing normal activity. Examples include models that encode possible attacks
in an intrusion detection system, trying to predict whether an attack is per-
formed [32]; models that focus on recognizing specific suspicious behaviors
in train stations [25], such as fighting; models with an a priori set of attack
templates [45] that are compared against observations to infer whether a
particular terrorist attack matches one or more templates; and models with
representation of human activities based on tracked trajectories e.g., [66].

All the approaches in this group focus on probabilistic ranking of hypothe-
ses utilizing various probabilistic plan recognition algorithms as described in
Section 2.1.2. Our work also incorporates the observer biases to the suspi-
cious behavior approach, allowing reduction in false alarms and more task-
oriented ranking of hypotheses.

The second approach is based on anomalous behavior; this approach has
been taken by several researchers in plan recognition. Here, the plan library
is used in an inverse fashion. The plan library is limited to covering only
positive behavior. When a plan-recognizer is unable to match observations
against the library (or generates hypotheses with very low likelihood), an
anomaly is announced [27,55].

Several approaches have been proposed to tackle the abnormality detec-
tion problem. The literature on anomaly detection (e.g., for security, user

19

2.2 Detecting Anomalous and Suspicious Behavior

identification, etc.) is vast. Much of it is only superficially related, in the
sense that the overall goals may be the same, but the application domains
and the methods appropriate for them are very different. For instance, fin-
gerprinting users from their behavior (e.g., [54]) is a related task, but the
focus is on the machine learning technique (of characteristic users behavior,
in a supervised manner). Similarly, we will not address here related work
on anomaly detection in data signals (e.g., [2, 26]). We focus instead on
the process of matching observations to intentions, encoded in a given plan
library. We thus limit ourselves to related research within plan recognition.

Xiang and Gong [93] adopted dynamic Bayesian network to model each
type of normal video patterns. An activity is identified as abnormal if the
likelihood of being generated by normal models is less then a threshold.
Duong et al. [27] use Switching Semi-Markov Models to represent user activ-
ities and perform abnormally detection in the context of durations and not
in state. Yin et al. [95] present a two phase approach to detect abnormal be-
havior based on wireless sensors attached to the human body. This approach
first uses Support Vector Machine (SVM) which filters out the activities with
a high probability of being normal, then derives from this model abnormal
activity model. Here also the model is learned on the normal activities.

However, these previous approaches leave several open challenges. First, a
number of key capabilities implied by the application are often ignored in ex-
isting work: Recognition based on duration of behaviors, recognition despite
intermittently lost observations, and recognition of interleaved goals. These
capabilities are required both for recognition of anomalous and suspicious
behavior model. We address these in this dissertation.

20

Part I

An Efficient Hybrid Model for
Plan Recognition

21

In this part we present a set of efficient algorithms that tackle challenges
in plan recognition. Plan recognition is the process of inferring other agents’
plans and goals based on their observable actions. This process often takes
the form of matching observations of an agent’s actions to a plan library, a
model of possible plans selected by the agent.

First, we show extensions to the basic symbolic plan recognition model
(Chapter 3), dealing with several open challenges: (a) reducing space com-
plexity of matching complex multi-featured observations to the plan library;
(b) dealing with plan execution duration constraints; (c) handling lossy ob-
servations (where an observation is intermittently lost); and (d) handling in-
terleaved plans (where an agent interrupts a plan for another, only to return
to the first later). These algorithms are symbolic in that they provide hy-
potheses with no ranking (probabilistic or otherwise). This symbolic model
is highly efficient and will be used later as a basis for a hybrid symbolic-
probabilistic recognizer, and for the multi-agent framework.

We then turn to present novel efficient algorithms that allow the ob-
server to incorporate her own biases and preferences—in the form of a utility
function—into the plan recognition process (Chapter 4). This allows choosing
recognition hypotheses based on their expected utility to the observer. We
call this Utility-based Plan Recognition (UPR). We present a general model
of UPR, extending Charniak and Goldman’s [23] Bayesian Network model
using Influence Diagrams. But, since reasoning about such expected utilities
is intractable in the general case, we present a hybrid symbolic/decision-
theoretic plan recognizer, whose runtime complexity in the worst case is
O(NDT), where N is the plan library size, D is the depth of the library and
T is the number of observations.

Finally, we present initial steps towards efficient dynamic tracking of the
organization of multi-agent teams (Chapter 5). This is done by using a
combination of single-agent symbolic plan recognizer, and the DHGM data-
structure. We maintain book-keeping information which allows us to dynam-
ically track and hypothesize as to the organizational structure of a group of
agents. To illustrate the use of DHGM, we present an application for detect-
ing suspicious behavior in multi-agent framework (Section 5.3). This model
is capable of catching suspicious behaviors that can be captured only when
tracking agents with respect to their group and not only as individuals.

22

Chapter 3

SBR: Efficient Symbolic Plan
Recognition

It is important for agents to model other agents’ unobserved plans and goals,
based on their observable actions. This process of modeling others based
on observations is known as plan-recognition. Plan recognition has been
studied for many years. It often takes the form of matching observations
of an agent’s actions to a plan-library, a model of possible plans selected
by the agent. However, there are several open key challenges in modern
plan recognition: (a) reducing space complexity of matching complex multi-
featured observations to the plan library; (b) dealing with plan execution
duration constraints; (c) handling lossy observations (where an observation
is intermittently lost); and (d) handling interleaved plans (where an agent
interrupts a plan for another, only to return to the first later).

In this chapter, we present efficient algorithms that address these chal-
lenges, in the context of symbolic plan recognition. The recognition algo-
rithms we develop follow in the footsteps of [4, 5] in their focus on com-
pleteness and efficiency. They rely on lazy commitment to hypotheses, to
avoid computation of hypotheses with every step (as other algorithms do,
e.g., [33]). Instead, they use linear-time bookkeeping with every observation,
which allows extraction of hypotheses only as needed. As commonly done in
plan recognition work (e.g., [18]), we utilize a hierarchical representation of
the plan library (Section 3.1.1).

Specifically, in Section 3.1 we describe the basics of SBR, giving definitions
to plan library. In Section 3.2 we show how to reduce the space complex-
ity of matching complex multi-featured observations to the plan library. In

23

3.1 Fast Symbolic Plan Recognition: The Basics

Section 3.3 we present efficient algorithms for dealing with plan execution
duration constraints, handling interleaved plans (where an agent interrupts
a plan for another, only to return to the first later), and handling lossy ob-
servations (where an observation is intermittently lost). In Section 3.4 we
summarize the improvements to the basic symbolic plan recognition model
and their computational complexity results.

3.1 Fast Symbolic Plan Recognition: The

Basics

This section describes the basics of SBR, a highly-efficient symbolic plan
recognizer, introduced in [4,5] (the reader is referred there for details). This
brief description is presented for completeness, so as to put the contributions
of this dissertation (Sections 3.2–3.3) in the right context.

In Section 3.1.1 we provide basic definitions of the plan library, a model
of possible plans selected by the agent. In Section 3.1.2 we describe the
efficient matching of multi-featured observations to the plan library, by using
a specialized data-structure, a matching decision-tree called FDT (Feature
Decision Tree). Section 3.1.3 presents efficient algorithms for answering the
current state query, i.e., hypotheses as to the internal state of the observed
agent when the observations were made.

3.1.1 The Plan Library

The plan-library is a model of possible plans selected by the agent. As
commonly done in plan recognition work (e.g., [18]), we utilize a hierarchical
representation of the plan library described bellow.

We represent the plan library as a single-root directed acyclic connected
graph G = 〈P,D, S〉, where the set P of vertices represents plan steps, and
edges can be of two types: Decomposition edges (D) that decompose plan
steps into sub-steps, and sequential edges (S) that specify the expected tem-
poral order of execution.

For the discussion, we refer to the children of the root node as top-level
plans, and to all other nodes simply as plans. However, we use the term plan
here in its general sense, inclusive of reaction plans [30], behaviors [60, 65],
and recipes [63]. For our purposes, a plan step is defined as follows:

24

3.1 Fast Symbolic Plan Recognition: The Basics

Definition 1. Plan step. A plan step P is set of actions that maintain or
achieve a goal. A plan-step may be atomic, or non-atomic. If it is non-atomic,
it can be broken down into sub-steps, each a plan-step in itself.

A totally-ordered sequence of plan sub-steps defines a plan-sequence,
which the agent is supposed to execute in service of the parent plan.

Definition 2. Plan sequence. A totally-ordered sequence of plan steps that
are linked via sequential edges, describing execution order of a given plan
step by its sub-steps.

To represent plan steps that have duration (i.e., plan steps that execute
over a number of time-steps), plan steps may have a sequential self-cycle, to
represent their continuation over multiple time-steps.

However, no cycles are allowed hierarchically. At any given time, the
observed agent is assumed to be executing a plan decomposition path, root-
to-leaf through decomposition edges.

Definition 3. Plan decomposition. A set of plan steps that are linked via
decomposition edges, elaborating (expanding) a given plan step.

Each plan has an associated set of conditions on observable features of
the agent and its actions. When these conditions hold, the observations are
said to match the plan. For example, a kick-ball-to-goal plan (of a robotic
soccer player) may have the following observation features (conditions): The
ball must be visible, the distance to the ball is within a given range, and the
opponent goal is visible within shooting distance. If all the above conditions
are satisfied, the plan matches the observation.

Definition 4. Observation. A tuple of observed feature values 〈f1, f2, ..., fn〉,
at in a given time stamp.

Definition 5. Observation sequence. A sequence of consecutive observations
〈o1, o2, ..., ot〉 ordered by time-stamps.

Definition 6. Matching. Mapping between an observation to subset of plan
steps. i.e., from the space of feature value vectors V F to the powerset of plan
steps.

Figure 3.1 shows an example portion of a plan library, inspired by the
behavior hierarchies of RoboCup soccer teams (e.g. [50]). The figure shows

25

3.1 Fast Symbolic Plan Recognition: The Basics

decomposition edges (solid arrows) and sequential edges (dashed arrows).
The top level plans are defend, attack, and score. The figure does not show the
observation conditions associated with plan steps. For presentation clarity,
we show the decomposition edges only to the first (in temporal order) child
plans. Thus in the figure, the path root → defend → turn → with ball can
be an hypothesis as to the current plan of an observed player. In realistic
settings, likely more than one path will match an observation tuple, and this
may result in a set of such decomposition paths, i.e., a set of hypotheses as
to the current state of the observed agent (answering a current state query).

An observed agent is assumed to change its internal state in two ways.
First, it may follow a sequential edge to the next plan step. Second, it may
reactively interrupt plan execution at any time, and select a new (first) plan.
For instance, suppose the agent was executing root → defend → turn →
with ball, and then interrupted execution of this plan. It may now choose
root → attack → pass, but not root → attack → turn → withball.

root

attackdefend score

position

clear

turn

Approach
ball

position

without
ball

position turn pass position turn kick

with
ball

without
ball

With
ball

with
ball

without
ball

2

1

3

1

1 1 2

2

2

22

2

222

2

2

31 1

Figure 3.1: Example plan library. Circled numbers denote timestamps (Section
3.1.3).

26

3.1 Fast Symbolic Plan Recognition: The Basics

3.1.2 Efficient Matching

The first phase of recognition, common to all recognition approaches, matches
the observations made by the recognizer to plans in the plan library. The
SBR consider complex observations, that consist of a tuple of observed fea-
tures, including states of the world that pertain to the agent (e.g., a soccer
player’s uniform number), actions taken (e.g., kick), and execution condi-
tions maintained (e.g., speed = 200). Matching such observations to plans
can be expensive, if we go over all plans and for each plan check all observed
features (e.g., [50]).

The SBR proposes a highly efficient matching step, augmenting the plan
library with a Feature Decision Tree (FDT), which efficiently maps observa-
tions to matching nodes in the plan library. In this way, features are tested
only once, no need to go over all the plan library and test all features. An
FDT is a decision tree, where nodes correspond to features, and branches to
conditions on their values. Determining the plans that match a set of obser-
vation features is efficiently achieved by traversing the FDT top-down, taking
branches that correspond to the observed values of features, until a leaf node
is reached. Each leaf node points at the plans that match the conjunctive
set of observations along the top-down path. Ideally, each leaf nodes points
to only one plan, though this may not be possible due to inherent ambiguity
in the plan library.

Figure 3.2 shows the connection between the FDT and the plan library.
It shows a portion of an FDT using features associated with plan-steps in
Figure 3.1. Each plan-step executed by the agent, can be identified accord-
ing to observed features, such as: Distance from other players, have ball,
opponent goal visibility, uniform number of agent. The FDT separates the
plan-steps according to the values of these features. To determine matching
plan-steps, the matching algorithm first checks the have ball feature. Based
on its value, it continues the appropriate branch to test in sequence other
features, until it finally reaches a leaf node. This leaf node will have pointers
to all instances of the plan-steps associated with it in the plan library. For
instance the leaf-node for position will have four separate pointers into the
plan library in Figure 3.1. Note that since the plan-step turn is applicable
regardless of whether have ball is true or false, a node associated with it will
appear in both left and right subtrees of the have ball root node.

To generate the FDT, we translate the plan library to set of instances,
called training set. Each plan-step in the plan library will represent one

27

3.1 Fast Symbolic Plan Recognition: The Basics

attack

position turn pass

without ball

Have ball ?

Opp-Goal Visible?

destination
from players

Uniform number

yes no

3
21

yes no

Very
far

far
near

Kick,
pass

pass

position

Without
ball

With ball

with ball

FDT

Plan Library

Figure 3.2: Example FDT with plan library.

28

3.1 Fast Symbolic Plan Recognition: The Basics

instance in the training set. An instance is a fixed set of values of features
(e.g, velocity) and the class of the instance, in our case the class is the plan-
step itself. Note that each plan-step will appear just once in the training set,
since the same plan-step has the same features. In case that a plan-step do
not test a feature we put a asterisk to denote missing values (all values) for
that feature, otherwise we put the value of the feature. For example, let us
consider three plan-steps: B1, B2, B3 and three boolean features: a1, a2, a3.
Suppose the following conditions on the plan-steps: B1 is possible if a1∧ a3,
B2 if ¬a2, and B3 if a1 ∧ a2 ∧ a3. The resulting training set is shown in
table 3.1.

classes � features a1 a2 a3
B1 T ∗ T
B2 ∗ F ∗
B3 T T T

Table 3.1: Example training set, generated from plan-steps in a plan library.

After generating the training set, the construction of the FDT is done
similar to that of a decision tree with missing values [78]. Similarly to a deci-
sion tree, the construction of the FDT can use information gain to determine
the most important features to test first, thus hopefully testing fewer fea-
tures. We briefly review this well-known process here. The reader is referred
to [61,78] for details.

The FDT construction algorithm is presented below (Algorithm 1). First,
we check if the instances can not be divided, meaning that a node points at
only a single plan, or there are no more features that can differentiate between
the plans associated with the instances. In this case we create a leaf (Lines
1–2). Otherwise, we create a node, and associates it with the feature that
provides the greatest information gain (Lines 3–4) (intuitively, that divides
plan-steps that test it as uniformly as possible). We then create children FDT
nodes for each of its values (Lines 5–9), and recursively repeat the process of
selecting a feature that best divides the plans associated with the node.

To create the children FDT nodes, we follow the procedure for handling
missing values in decision trees (See [78]). Briefly, the algorithm (in each
step), divides the instances according to the tested features. Each instance
gets a weight, that is initialized to one at the beginning of the algorithm.
This weight represents the fraction of the instances having this value for

29

3.1 Fast Symbolic Plan Recognition: The Basics

the feature, and is used for the purpose of computing the information gain.
When there is ‘*’ value for the tested feature in the instance, we divide this
weight between all branches, therefore dividing its weight in the number of
possible values that the feature can take. When having value for the feature,
the weight of the instance remains the same.

The children are constructed as follows. For each possible value of the
selected feature (line 5), we select all instances that correspond to this value
or have ‘*’ value (line 6). For each selected instance, we update its weight
in the following manner: if there is a ‘*’ value, then we divide its weight in
the number of the values of this feature, otherwise the weight remains the
same (line 7). We also update the NotTested set of features by removing
the new tested feature (line 8). Then we recursively repeat on this process
of selecting a feature that best divides the plans associated with the node
with the new instances, new weights and the new not tested features, and
dividing accordingly.

Algorithm 1 FormTree(Instances, Weights,NotTested)

1: if (NotTested=∅ ∨ Instances=1) then
2: return CreateLeaf(Instances)
3: BestFeature ← argmaxf∈NotTestedGain(f)
4: CreateNode(BestFeature)
5: for all possible values v of BestFeature do
6: newInstances ← instances with value v or ∗
7: NewWeights ← CalculateWeights(NewInstances)
8: NotTested ← NotTested− {BestFeature}
9: FormTree(NewInstances, NewWeights, NotTested)

3.1.3 Current-State Hypothesis

An important query in reactive plan recognition is with respect to the current
plan step selected by the observed agent. In most hierarchical plan-libraries—
as in ours—this query translates to determining the decomposition paths
(root-to-leaves) that are consistent with the observations, and potentially
are being executed by the observed agent. Each such path is a current-state
hypothesis.

To answer such queries, the SBR recognizer operates as follow: First,
it matches observations to specific plan steps in the library, e.g., using the

30

3.1 Fast Symbolic Plan Recognition: The Basics

FDT (described earlier). Then, after matching plan steps are found, they
are tagged by the time-stamp of the observation. These tags are then prop-
agated up the plan library (see below for explanation of the propagateUp
algorithm), so that complete plan-paths (root to leaf) are tagged to indi-
cate they constitute hypotheses as to the internal state of the observed agent
when the observations were made.

The inference process is carried out by the CSQ (Current State Query)
algorithm. The CSQ algorithm tags matching plan steps with time-stamps,
and tries to propagate these tags up along the plan library, so that complete
paths (root to leaf) are tagged. If the propagation fails due to temporal
constraints (see below), it deletes all tags it has generated in climbing up the
graph.

The propagation up process done by the propagateUp algorithm (Algo-
rithm 2), which tags paths in the plan library as consistent with the current
observation. To do this, it must propagates these tags up along decompo-
sition edges. However, the propagation process is not a simple matter of
climbing from child to parent. A plan may match the current observation,
yet be temporally inconsistent, when a history of observations is considered.

Figure 3.1 shows the process in action (the circled numbers in the figure
denote the time-stamps). Assume that the matching algorithm matches at
time t = 1 the multiple instances of the position plan. At time t = 1,
Propagate begins with the four position instances. It immediately fails to
tag the instance that follows clear and approachball, since these were not
tagged at t = 0. The position instance under score is initially tagged, but in
propagating the tag up, the parent score fails, because it follows attack, and
attack is not tagged t = 0. Therefore, all tags t = 1 will be removed from
score and its child position. The two remaining instances successfully tag
up and down, and result in possible hypotheses root → defend → position
and root → attack → position.

To disqualify hypotheses that are inconsistent (e.g., given a history of
observations), CSQ calls the algorithm IsConsistent (Algorithm 3) to make
the decision of whether a proposed time-stamp should be applied to a given
plan step, given information in the model. The IsConsistent (Algorithm
3) operates as follows: Line 2 checks whether time stamp t is temporally
consistent, i.e., if one of three cases holds: (a) the node in question was
tagged at time t − 1 (i.e., it is continuing in a self-cycle); or (b) the node
follows a sequential edge from a plan that was successfully tagged at time
t − 1; or (c) the node is a first child (there is no sequential edge leading

31

3.1 Fast Symbolic Plan Recognition: The Basics

Algorithm 2 PropagateUp(Node v, Plan Library g, Time-stamp t)

1: Tagged ← ∅
2: PropagateUpSuccess ← true
3: v ← w
4: while v 6= root(g) ∧ PropagateUpSuccess ∧ ¬tagged(v, t) do
5: if IsConsistent(v, g, t) then
6: Tagged ← tagged ∪ {v}
7: v ← parent(v)
8: PropagateUpSuccess ← true
9: else

10: PropagateUpSuccess ← false
11: if ¬propagateUpSuccess then
12: for all a ∈ Tagged do
13: delete tag(a, t)

into it). A first child may be selected at any time (e.g., if another plan was
interrupted)1.

If neither of these cases is applicable, then the node is not part of a
temporally-consistent hypothesis, and its tag should be deleted, along with
all tags that it has generated in climbing up the graph. This final deletion
of all failing tags takes place in the CSQ Algorithm.

The CSQ is meant to be called with every new observation. The tags
made on the plan-library are used to save information from one run to the
next. Note that it assumes that the calls to it have been made in order of
increasing depth, from the parent to the children, to avoid the case that the
children are tagged, but their parent is not.

Algorithm 3 IsConsistent(Node v, Plan Library g, Time-stamp t)

1: if tagged(parent(v), t) ∨ features(parent(v)) = ∅ then
2: if tagged(v, t − 1) ∨ ∃PreviousSeqEdgeTaggedWith(v, t − 1) ∨

NoSeqEdges(v) then
3: return true
4: return false

1In Sections 3.3.1 and 3.3.2, we modify these consistency checks and extend them, so
that they take additional constraints into account.

32

3.2 Reducing Matching Space Complexity: Compact FDT

3.2 Reducing Matching Space Complexity:

Compact FDT

The FDT presented in Section 3.1.2 efficiently maps the observation to the
plan library. Clearly, the use of the FDT leads to very significant improve-
ments in the matching time compared to previous work. However, its space
complexity is exponential in the number of features: O(V F), where V is the
maximum number of values for the features and F is the number of fea-
tures. This section will introduce compact-FDT, which reduces the space
complexity of the FDT to linear in the plan library size.

To analyze the worst case space complexity of the FDT, we differentiate
between two cases: (a) Each behavior in the plan library contains conditions
on all observed features; (b) Not all observed features are tested, therefore
the training set that construct the FDT has many ‘*’ values (wildcard which
match all values). In case (a), the worst-case space complexity is bounded
in the number of behaviors O(L), i.e,. it is linear in the plan library size;
each behavior will appear only once in the leaves, since each feature splits
the behaviors into different branches according to their values.

However, in case (b) when we have ‘*’ values, we usually get to the worst-
case exponential space complexity of O(V F). The reason for this is that we
split each behavior to appear in more than one branch. Instead, the behavior
will appear in all branches. For example, assume that we have a plan-step
p1 that has feature f1 with the value ‘*’, meaning that for p1 to be true, the
observed value of f1 will not matter. In the FDT the node that tests f1,
will have number of branches which plan-step p1 will appear in all of them,
since p1 matches all values of feature f1.

To demonstrate the problem let us consider three plan-steps: b1, b2, b3
and three boolean features: a1, a2, a3. Suppose the following conditions on
the plan-steps: b1 is possible if a1 is true, b2 if a2 is true, and b3 if a3 is
true. The training set shown in table 3.1. The corresponding FDT is shown
in figure 3.3. Solid arrows denote true values and dashed arrows denote false
values. Here we got the maximum space 23 = 8. Each behavior can appear
in more than one leaf. For example, the behavior b1 appears in 4 leaves.

To overcome this problem, we suggest to use a new data structure, called
Compact-FDT, that represents the mapping of observations to plans in a
different manner. The idea is to add a new branch marked ‘*’ for a feature
x, if this feature cannot distinguish between classes. Classes that appears

33

3.2 Reducing Matching Space Complexity: Compact FDT

classes � features x y z
b1 T ∗ ∗
b2 ∗ T ∗
b3 ∗ ∗ T

Table 3.2: Example training set, generated from plan-steps

y

x

y

z z z b3

b1,b2,b3 b1,b2 b1,b3 b1 b2,b3 b2

Figure 3.3: FDT with exponential size. Solid arrows denote true values and
dashed arrows denote false values

34

3.2 Reducing Matching Space Complexity: Compact FDT

both in the true branch and the false branch are put together in the ‘*’
branch. Figure 3.4 shows the Compact-FDT corresponding to the previous
example.

y

x

z

b3

{b1,b2,b3}

{b2,b3}
Emptyb1

{b3}
Emptyb2

Empty

Empty

Figure 3.4: Compact FDT for the same plan library as in figure 3.3. Solid arrows
denote true values, dashed arrows denote false values, and middle arrows denote
‘*’ branch

The construction of the Compact FDT is done as in the FDT (Algorithm
1), but with a number of differences (Algorithm 4). To create an ‘*’ value
branch (Lines 9–11), we select only the plan steps (instances) with ‘*’ value
for the tested feature. Note that in line 13 we take only those instances with
value v and not as in FDT, that we took also ‘*’ value. The construction
of the ‘*’ branch is different from the construction of MissV alues (Lines
6–8), where all instances are copied from the parent, no matter what are
their values.

When traversing the Compact FDT, in addition to the branch we would
have gone in FDT, we will also go to the branch marked with (‘*’). The result
will be the union of all behaviors in the leaves both from the ‘*’ branches
and from the traversal of the tree according to the observed values of each

35

3.2 Reducing Matching Space Complexity: Compact FDT

feature.

Algorithm 4 FormCompactTree(Instances, Weights, NotTested)

1: if (NotTested=∅ ∨ Instances=1) then
2: return CreateLeaf(Instances)
3: BestFeature ← argmaxf∈NotTestedGain(f)
4: CreateNode(BestFeature)
5: for all possible values v of BestFeature do
6: if v = missing value then
7: NewInstances ← Instances
8: NewWeights ← Weights
9: else if v = ∗ then

10: NewInstances ← Instances with value ∗
11: NewWeights ← Weights of NewInstances
12: else
13: NewInstances ← all instances with value v
14: NewWeights ← CalculateWeights(newInstances)
15: NewNotTested ← NotTested− {BestFeature}
16: FormCompactTree(NewInstances, NewWeights, NewNotTested)

The Compact FDT Matching algorithm (Algorithm 5) is as the matching
algorithm of the FDT (see [5] for more details), except for Lines 6–7. The
addition is in Lines 6–7, where in addition to traversing the FDT according
to the values of the observed features we are also following the ‘*’ branches
until we get to the matching leaves. Then, after getting to the appropriate
leaves in the Compact FDT, we return pointers to the relevant plan-steps
in the plan library (Line 2). Note that as opposed to FDT, where we reach
only one leaf in the end of the process, here we unify the results of reaching
more than one leaf plan step.

Complexity Analysis We define k as the number of values of each
feature plus one for ‘*’ value. Now, we differentiate between three cases:

1. k = 2, meaning each feature has 2 values: true or false, plus ‘*’ value.

2. k > 2, and there exists a single value for each feature; each behavior
has one value for its feature (except ‘*’ values).

3. k > 2, and there exist multiple values for each feature. For example,
in behavior b1 the value of feature f1 is v1 or v2. For behavior b2

36

3.2 Reducing Matching Space Complexity: Compact FDT

Algorithm 5 Matching(Feature Tree Node v, Observed Features List F ,
Plan Library L, Feature Tree fdt)

1: if v is a leaf then
2: return all plan-steps in L that match plan-step in v
3: else
4: i ← FeatureIndex(fdt, v)
5: v1 ← child(fdt, v, Fi)
6: v2 ← child(fdt, v, ∗)
7: return MatchCompact(v1, F, L, fdt)

⋃
MatchCompact(v2, F, L, fdt)

the values are v2 or v3. Note that in this case, it might be an overlap
between values.

In the first two cases, the worst case space complexity is O(L), where L is
the plan library size. The CompactFDT is a full (k + 1)-ary tree; each node
has k + 1 or zero branching children. Each feature will divide the behaviors
associated to it to k +1 branches. Some of these can be empty branches, but
at least 2 branches have values, otherwise there is no point to use this feature
since it does not distinguish between different behaviors. Each behavior will
not appear in more than one branch: It will appear either in its value branch
(there is no overlapping between branches values) or the ‘*’ branch. The total
number of all behaviors in the leaves will be O(L), the number of behaviors
in the plan library. The worst case space complexity of a full (k + 1)-ary
tree is when it is complete (i.e., all leaves are in the same level all internal
nodes have exactly k + 1 branches). It is known that the number of leaves
in a complete k + 1-ary tree is equal to (k + 1)h, where h is the height of

the tree. The number of internal nodes in the full k + 1-ary tree is (k+1)h−1
(k+1)−1

.

Recall that we said that the number of leaves are L = (k + 1)h. Therefore
the space complexity of the Compact FDT is O(L + L−1

(k+1)−1
) = O(L).

In the third case, where each behavior has multiple values, the worst case
space complexity is still exponential: O(V F). This will happen when for each
feature we can not distinct between the different behavior, since the values
overlap. We believe that this is a rare case in practical settings. In principle,
it can be handled by different branching, but this lies outside the scope of
this work.

The run-time complexity remain linear in the plan library size O(L), in
all cases. In the worst case we will go over the whole compact-FDT, where

37

3.3 Accounting for Complex Temporal Behaviors

selecting in each step the branch that matches the value of the observed
feature and the ‘*’ branch, visiting only once in each node. This will be
done by traversing the compact-FDT top down recursively choosing the ‘*’
branches and the branch according to the observed feature till getting to the
leaves. We will not visit the same node more than once.

3.3 Accounting for Complex Temporal Be-

haviors

The basic model described in Section 3.1.3 may be used to recognize plan(s)
that are ordered in time. It also allows for plan steps to have duration, by
modelling self-cycles. However, it cannot recognize more complex forms of
temporal execution of plans, such as maintaining the selection of a specific
plan-step within some bounded interval, or interrupting a sequence of plan
steps under one node, to execute another, only to return to it to the first
sequence later (plan interleaving).

This section shows how the CSQ mechanisms introduced in Section 3.1.3
can be extended to account for these temporal plans. Section 3.3.1 extends
the propagateUp algorithm (Algorithm 2) to take duration bounds (mini-
mum and maximum time spent in a plan-step) into account. Section 3.3.2
independently explores modifications to propagateUp for interleaving. Sec-
tion 3.3.3 independently explores modifications to propagateUp for handling
missing observations (where all features are unobservable).

3.3.1 Managing Durations

Instances of the same plan step can vary in the duration of their execution.
For example, depending on the distance to the ball, a soccer player may take
a long time or short time to execute the approach ball plan in Figure 3.1.
As a result, we may have multiple observation time-stamps (t, t+1, . . . t+k)
that are all consistent with a single plan, and only reflect the duration that
its execution requires between one and k + 1 time-stamps.

However, often some bounds are known on execution duration. For in-
stance, in an airport terminal, there exists a difference in the plans of a
passenger who stands at the check-in area for a few minutes, and a security
guard who stands there for a few hours. Or, in a different example, a bas-

38

3.3 Accounting for Complex Temporal Behaviors

ketball player is only allowed inside the basket zone for a limited amount of
time.

We thus want to take into account constraints on the duration of plan-
steps. We can allow such constrains in the approach we presented. We
extend the tagging mechanism to allow two types of tags: (a) Hard tags,
which signify that a plan step is (or is not) consistent with respect to previous
plan-steps (the IsConsistent algorithm, Algorithm 3), and also consistent
with duration constraints (minimum, maximum time); and (b) Soft tags,
which signify that a plan-step is (or is not) consistent with observations (and
with prior plan-steps), but is not within its duration constraints (e.g., this
plan-step has not been selected for sufficient amount of time, but may be in
few time-stamps).

We make the following additions to the propagateUp algorithm, and
present the revised algorithm (Algorithm 6): (1) Line 4 checks if v is
not tagged with hard tag (instead of checking if tagged); (2) Line 5:
checks if the maximum duration holds, using CalcDuration algorithm
(Algorithm 7); (3) Line 6: in the IsConsistent algorithm, all the oc-
currences of tagged(v, t) should be replaced with tagged(v, t, Soft), and
the ExistsPreviousSeqEdgeTaggedWith(v, t − 1) should be replaced with
ExistsPreviousSeqEdgeTaggedWith(v, t − 1, Hard); (4) Lines 7–12 if the
minimum duration constrain holds, then the plan will be tagged in time-
stamp t with Hard tag, otherwise with Soft tag.

The algorithm calcDuration (Algorithm 7), calculates the duration in
which the plan was active. To calculate this, the algorithm goes over the time-
stamps of the plan from time stamp t, and counts the number of consecutive
tags (time-stamps with no temporal gaps). For example, if plan is tagged
with time-stamps 1,4,5 and 6 then the duration will be 3.

3.3.2 Interleaved Plans

Many plan recognition algorithms cannot cope with modelling an agent that
is pursuing multiple plans (i.e., for multiple goals), by interleaving plan steps.
Here, the agent may begin with one plan, and interrupt its execution to
execute another, only to return to the remaining plan steps in the first plan.

To handle interleaving, we add a memoryF lag in each of the first children.
This flag will hold the latest time-stamp tag, in the sequential link chain from
this child. We will use this flag to disqualify plans that are in the middle of
the chain and are not the ones that we paused at. For example, in Figure 3.1,

39

3.3 Accounting for Complex Temporal Behaviors

Algorithm 6 PropagateUp(Node v, Plan Library g, Time-stamp t)

1: Tagged ← ∅
2: PropagateUpSuccess ← true
3: v ← w
4: while v 6= root(g) ∧ PropagateUpSuccess ∧ ¬tagged(v, t, Hard) do
5: if CalcDuration(v, t) < maxDuration(v) then
6: if IsConsistent(v, g, t) then
7: if CalcDuration(v, t) < minDuration(v)− 1 then
8: tag(v, t, Soft)
9: else

10: tag(v, t, Hard)
11: Tagged ← tagged ∪ {v}
12: v ← parent(v)
13: propagateUpSuccess ← true
14: else
15: propagateUpSuccess ← false
16: else
17: propagateUpSuccess ← false
18: if ¬propagateUpSuccess then
19: for all a ∈ Tagged do
20: delete tag(a, t)

Algorithm 7 calcDuration(Node v, Time-stamp t)

1: counter ← 0
2: time ← t
3: while time > 0 do
4: if tagged(v, t− 1, Soft) then
5: Counter ←counter+1
6: time ←time-1
7: else
8: break
9: return(counter)

40

3.3 Accounting for Complex Temporal Behaviors

the position plan under attack will hold memoryF lag that contain the time-
stamp 2. Suppose that there is a sequential link also from turn to pass. Then
we would like to return exactly to pass and not to the turn plan step.

The approach we present above can deal with these cases by making one
change to the isConsistent algorithm (algorithm 3). In line 2, the con-
dition: ∃IncomingSeqEdgeTagged(v, t − 1) should be replaced with two
conditions: First, ∃IncomingSeqEdgeTagged(v, t− 1orsmaller)). Meaning
that we check whether there is an incoming sequential edge from a plan-
step tagged with a time-stamp that is smaller or equal to t − 1. This
will allow a plan-step to be considered consistent if it continues a previ-
ously interrupted sequence of plan-steps. Second, we add the condition
∃IncomingSeqEdgeTagged(v,MemoryF lag), this condition forces a return
to the interrupted plan-step.

Although we add recognition capabilities, we should remember that this
change can influence the number of possible hypotheses. A partial solution
is to tag those plans that can be interrupted and resumed with a jump
label. The isConsistent algorithm will then check plans based on their
jump settings. For plans with a jump label, it will check that the previous
node had time equal to t− 1. For plans without a jump label, it will check
equal or smaller than t − 1 constraint. This allows greater control over the
accuracy of the model, and facilitates increased efficiency.

Another issue to discuss is the question of how many ticks (time units)
can pass from the time we interrupt a plan step, until returning to it. To
limit this time, we can add a flag MaximumInterruptT ime, and add also
the constraint that the difference between a new observation’s time-stamp
and that of a node with an incoming sequential edge, must be smaller than
MaximumInterruptT ime. This can disqualify lingering hypotheses, and
make the algorithm more accurate.

3.3.3 Missing Observations

An underlying assumption in previous investigations is that every change in
internal state (in our terms, change in plan path) is somehow reflected in
observations. However, in realistic settings, this assumption is sometimes vi-
olated (e.g., in Overhearing applications [49]. Some internal decision-making
may be permanently or intermittently unobservable, for all of the plans along
a specific plan decomposition path. In this case, an entire observation is es-
sentially missing (all features are unobservable).

41

3.4 Summary: SBR Improvements

We propose some small changes in the propagation algorithms to allow
them to address this difficulty. The idea is to mark potentially-unobservable
plans with a lossy label in the plan library (though the first and the last
plans in a plan-step sequence cannot have a lossy label).

We again modify the algorithms IsConsistent (Algorithm 3) and
propagateUp (Algorithm 2). In the propagating process, nodes that are
labelled as lossy and are part of a sequence will be skipped (if they are not
tagged), when the sequence is checked for temporal consistency. This is done
by replacing the method tagged(X, t) with a new method.

The AdvanceTagged(v, t) algorithm (Algorithm 8) exploits the sequential
edges and the lossy labels. Plan v will be considered as tagged at time-stamp
t if one of two cases holds: (a) the plan itself is tagged with time-stamp t−1;
(b) the plan is not tagged with time-stamp t− 1, but it has lossy label and
the sequential edge that points to it is tagged with time-stamp t− 1. In case
that there are chains of lossy labels, we check if the first plan that is not
labelled with lossy is tagged with time-stamp t− 1. It is important to note
here that the time referred to by the time-stamp is the observation time, not
world time. Thus t − 1 is the time of the previous observation, not a single
tick ago.

This feature must be used carefully, since it can significantly influence
runtime, and the number of possible hypotheses. Specifically, labelling many
plan steps as lossy will result in long backtracks through previous plan-step
nodes, until we arrive at node that was not labelled with lossy or that was
tagged with time stamp t − 1. This can be significantly more expensive to
do than just checking whether the previous node on the sequence was tagged
with time stamp t−1. The number of output hypotheses also increases when
adding many lossy labels, because a plan-step labelled lossy can be a part of
many hypotheses, without being observed.

3.4 Summary: SBR Improvements

Compared to earlier work [4, 5] on the SBR algorithms, this chapter intro-
duced a number of significant improvements to symbolic plan recognition.
Figure 3.5 summarize these improvements, and their computational com-
plexity results introduced in this chapter.

42

3.4 Summary: SBR Improvements

Algorithm 8 AdvanceTagged(Node v,Timestamp t, Plan Library g)

1: if tagged(v, t) then
2: return true
3: else
4: while (v labelled as lossy) ∧ (∃X, s.t. (X, v) ∈ g) do
5: if tagged(X, t) then
6: return true
7: v ← X
8: return false

O(V^F). We believe that this is a
rare case in practical settings (each
behavior has multiple values for
each feature).

O(V^F)Matching worst-
case space
complexity

Linear in the plan library size O(L).Linear in the plan library
size O(L).

Simple CSQ run-
time complexity

Linear in the plan library size O(L).-CSQ run-time with
lossy observations

Linear in the plan library size O(L).-CSQ run-time with
interleaved goals

Linear in the plan library size O(L).-CSQ run-time with
durations

Linear in the plan library size
O(F+L).

Linear in the plan library
size O(F+L).

Matching run-time
complexity

Linear in the plan library size O(L). Exponential: O(V^F),
where V is the maximum
number of values for the
features and F is the
number of features.

Matching best-case
space complexity

Extended SBRBasic SBR

Figure 3.5: Summary of the improvements to the basic symbolic plan recognition
model introduced in Chapter 3.

43

Chapter 4

UPR: Efficient Utility-based
Plan Recognition

Essentially all previous work in plan recognition has focused on recognition
accuracy itself, with no regard to the use of the information in the recognizing
agent. As a result, low-likelihood recognition hypotheses that may imply
significant meaning to the observer are ignored in existing work. In this work,
we present novel efficient algorithms that allow the observer to incorporate
her own biases and preferences—in the form of a utility function—into the
plan recognition process. This allows choosing recognition hypotheses based
on their expected utility to the observer. We call this Utility-based Plan
Recognition (UPR). We present a general model of UPR, extending Charniak
and Goldman’s [23] Bayesian Network model using Influence Diagrams. But,
since reasoning about such expected utilities is intractable in the general
case, we present a hybrid symbolic/decision-theoretic plan recognizer, whose
runtime complexity in the worst case is O(NDT), where N is the plan library
size, D is the depth of the library and T is the number of observations.

Specifically, in Section 4.1 we present a procedure to create a Plan
Recognition Influence Diagrams. In Section 4.2 we present efficient hybrid
symbolic/decision-theoretic plan recognizer.

4.1 UPR in Influence Diagrams

This section presents a procedure to create a Plan Recognition Influence
Diagrams (PRID). We first introduce the seminal Bayesian Model of Plan

44

4.1 UPR in Influence Diagrams

Recognition introduced in [23] (Section 4.1.1). Then, in Section 4.1.2 we
extend this procedure to create an influence diagram from the Bayesian Net-
work. Finally, we show the complexity of this approach in Section 4.1.3.

4.1.1 A Bayesian Model of Plan Recognition

The first probabilistic plan recognition system was described by Charniak
and Goldman [23], presenting a procedure for constructing Plan Recognition
Bayesian Networks. We build upon this basic model, and show how to add
utilities to this model in Section 4.1.2. Note that there are other models
(e.g, [43]) that also generate belief networks from plan libraries to solve plan
recognition problems. We believe our approach can be applied for other types
of belief networks in the same manner.

We briefly describe the Charniak and Goldman construction method; The
reader is referred to [23] for a detailed description. We use an illustrative
example (Figure 4.1), in which there are two competing hypotheses: Robbing
and shopping (taken from [23]). This plan library is constructed based on
the story: “Jack went to the liquor store. He pointed a gun at the owner”.
After processing the first line, the constructed Bayesian network will infer
with high probability that Jack is shopping at a liquor store, however after
reading the second line, it will infer that a robbery is more probable.

Figure 4.1 shows four types of nodes, introduced in [23]:

1. Hypothesis plans nodes denoted by (inst object type). There are two hy-
potheses nodes from this type in Figure 4.1: (inst iss3 liquor-shopping),
meaning iss3 is some sub-type of the hypothesis liquor-shopping, and
(inst rob4 rob) which mean that rob4 is some sub-type of the hypothesis
rob.

2. Plan-step nodes which explain the observed action. For example, (inst
go1 go) explains the going event (observed action).

3. Slot-filler nodes denoted by (=(stp1 p) a1), indicating that the event
a1 is a step in plan p. The slot fillers connect the observed action (the
event) to the plan. For example, (=(go-stp iss3) go1) is a slot filler
that connects the observed action (inst go1 go) to the plan (inst iss3
liquor-shopping).

4. Other evidence nodes, with general evidence information. For example:
the node (=(destination go1) is2) connects between (=(go-stp iss3) is2)

45

4.1 UPR in Influence Diagrams

and (=(store-of iss3) is2), to show that the destination of going is a
liquor store.

In this example it is clear that the robbing hypothesis matches, since we
had the observation that Jack points a gun at the owner. But, there are
cases that it is unclear whether we still want the most probable hypothesis
or the hypothesis that costs more to the observer.

For example, if we replace the second line in the previous example with:
“Jack holds a gun in his pocket”. In this case the Bayes Net still infers that
this is the shopping event with high probability. The reason is that the a-
priori probability of shopping is higher than robbery, and holding a gun in
the pocket does not necessary means that the person is planning a robbery.
However, this case can be dangerous for the observer (i.e,. the owner of
the liquor-store) and she may want to take into consideration the matching
hypothesis of robbing that can harm her.

This is an example where the observer may want to combine into the plan
recognition model a utility function that model the risk she would take for
different cases, and take into consideration also hypotheses with the high cost
and not with the high probability. In Section 4.1.2 we present procedures
that take into account the utility function of the observer.

4.1.2 Plan Recognition Influence Diagram

We now show how to include reasoning about the utility of hypotheses to the
observer. We use a general mechanism for making decisions called influence
diagrams ([41]), which extends belief networks with additional node types
for actions and utilities. Influence Diagrams have three types of nodes: (a)
Chance nodes (ovals), which represent random variables as in belief nets
(the agent’s beliefs about the world); (b) Decision nodes (rectangles), which
represent points where the decision maker has a choice of actions; and (c)
Utility nodes or Value nodes (diamonds), which represent the agent utility
function.

We extend the procedure described in Section 4.1.1 to influence diagrams.
The procedure to create a Plan Recognition Influence Diagrams (PRID) is
as follows:

1. We add a utility node ui for each hypothesized plan pi.

2. We connect all slot-fillers of plan pi to the utility node ui via utility
arcs. In this way we can have a different cost for different actions of

46

4.1 UPR in Influence Diagrams

Inst iss3 liquor-shopping Inst rob4 rob

Inst go1 go

(=(go-stp iss3) go1)

(=(store-of iss3) is2)

Inst is2 liquor-store

(=(go-stp rob4) go1)

(=(store-of rob4) is2)

(=(destination go1) is2)

(inst gun6 gun)

(=(gun-of rob1) gun6)

(inst point5 point)

(=(point-stp rob1) point5)

Figure 4.1: An example of Bayesian Network, Competition between shopping
and Robbing (taken from [23]). Slot-fillers are in Bold.

47

4.1 UPR in Influence Diagrams

the observed agent (note that we add an arc from the slot-filler and
not from the observed action, since the slot fillers connects between
the observed action and the plan).

3. We add arcs from other evidence node to ui(for example we want to
give different costs for different destinations – higher cost for being at
a jewelry store then in a liquor-store).

Note that, alternatively, we can add arcs only from the hypothesized plan
pi to ui, but we will not be able to give different costs for different events
under the hypothesized plan pi. For example, we will not be able to give
higher cost for the event of holding a big gun, and lower cost for holding a
small gun. Note also that there is no decision node, since we do not have a
decision to make here. The PRID only represents the information, and does
not decide on the actions.

Figure 4.2 shows the resulting PRID (plan recognition influence diagram)
for the example in Section 4.1.1. We added two utilities nodes (denoted with
diamonds): One for the shopping plan and one for the robbing plan. We
use these here to reason about cost of the observer (high utility, means high
cost for the observer). Then, from the slot fillers of these plans and from
the other evidence node, we added arcs to the appropriate utilities nodes
(denoted with dashed arrows). For presentation clarity, nodes that are not
related to utility were omitted from the figure.

Evaluating the influence diagram is done quite similar to the algorithm
described in [79]: (a) Set evidence variables for the current state; (b) Calcu-
late posterior probabilities for the parent nodes of each of the utility nodes;
(c) Calculate the resulting utility; (d) Return the plan with the highest utility
(highest cost for the observer, in the example).

A Simple Running Example. Assume that we had an observation like:
“Jack holds a gun in his pocket in the liquor-store”. The observer set up the
utilities information as to it subjective preferences and biases to balance
between the probabilities and costs. We assume the following probabilities
(the probabilities table were built based on [23]):

1. The prior probabilities of the Hypotheses plans (inst iss3 liquor-
shopping) and (inst rob4 rob), are 0.8 and 0.02, respectively.

2. The plan-step which explains the observed action probability is true
given its parents are true, when both parents are false we give a uniform

48

4.1 UPR in Influence Diagrams

Inst iss3 liquor-shopping Inst rob4 rob

(=(go-stp iss3) go1)

(=(store-of iss3) is2)

(=(go-stp rob4) go1)

(=(store-of rob4) is2)

(=(destination go1) is2)

(=(gun-of rob1) gun6)

(=(point-stp rob1) point5)

U_shop U_rob

Figure 4.2: An example of Influence Diagram for the Competition between shop-
ping and Robbing (dashed arrows denote utilities arcs)

49

4.1 UPR in Influence Diagrams

Parents Nodes Inst go1 go
Inst iss3 liquor-shopping Inst rob4 rob True False

True
True 1 0
False 1 0

False
True 1 0
False 0.5 0.5

Table 4.1: The Conditional Probability Table of Inst go1 go.

distribution (0.5 for true and 0.5 for false). For example, see (inst go1
go) conditional probabilities in Table 4.1.

3. The slot-filler is true when both its parents are true. For example, see
the Conditional probabilities of (=(go-stp iss3)go1) in Table 4.2.

4. The other evidence is true when the context it explains is true. For
example, (=(destination go1)is2) is true when both (=(go-stp iss3)go1)
and (=(store-of iss3)is2) are true or (=(go-stp rob4)is2) and (=(store-of
rob4)is2) are true.

We now add utilities (costs for the observer). Assume that we want to give
high cost to someone enters the store with a gun. In this case we put on
the arc from (=(gun-of rob1) gun6) to the utility node U Rob cost of 100.
Figure 4.3 shows the calculated probabilities and utilities of this example.
We see that in this simple example the probability of hypothesis of robbing
is 0.022, while the shopping hypothesis is about 0.88. Thus, the Bayesian
Network described at [23] will infer that this is a shopping event with high
probability. However, with the influence diagram we can see that there is a
risk with Jack and closely track his moves to see whether he points a gun
later on.

4.1.3 Complexity Analysis

We have shown here how a UPR recognizer could be implemented by ex-
tending the use of plan-recognition Bayesian Networks [23] to influence dia-
grams [41]. However, the run-time complexity of inference in such represen-
tations may be inhibitory for real-world cases.

50

4.1 UPR in Influence Diagrams

Parents Nodes (=(go-stp iss3)go1)
Inst iss3 liquor-shopping Inst go1 go True False

True
True 1 0
False 0 1

False
True 0 1
False 0 1

Table 4.2: The Conditional Probability Table of (=(go-stp iss3)go1).

Inst iss3 liquor-shopping Inst rob4 rob

(=(go-stp iss3) go1)

(=(store-of iss3) is2)

(=(go-stp rob4) go1)

(=(store-of rob4) is2)

(=(destination go1) is2)

(=(gun-of rob1) gun6)

(=(point-stp rob1) point5)

U_shop=0 U_rob=2.220.0222
0.8869

0.0222

0.0222

0.0222

0.0222

0.8869

0.8869

0.89

Figure 4.3: A running example of Influence Diagram for the Competition between
shopping and Robbing (dashed arrows denote utilities arcs)

51

4.2 A Hybrid UPR Technique

In general, probabilistic inference is NP-Hard [24]. Even approximate
inference is NP-Hard; although scales well with the network size, is NP-Hard
with respect to the hard-bound of the estimates. In Section 4.2 we will show
a hybrid UPR technique which reduces the complexity to worst-case runtime
complexity O(NDT), where D is the depth of the plan library, N is the plan
library size and T is the number of observations. However, to achieve this,
the hybrid UPR sacrifices expressivity.

4.2 A Hybrid UPR Technique

This section presents an efficient hybrid UPR technique. Here, a highly
efficient symbolic plan recognizer presented in Chapter 3 is used to filter
through hypotheses, maintaining only those that are consistent with the ob-
servations (but not ranking the hypotheses in any way). We then add an
expected utility aggregation layer, which is run on top of the symbolic recog-
nizer (Section 4.2.1). In Section 4.2.2 we reduce the complexity. In Section
4.2.3 we discuss the expressivity sacrifices the hybrid UPR does for reducing
the complexity.

4.2.1 Computing the Expected Utility of an Hypothe-
sis

After getting all current state hypotheses from the symbolic recognizer, the
next step is to compute the expected utility of each hypothesis. This is done
by multiplying the posterior probability of a hypothesis, by its utility to the
observer.

We follow in the footsteps of Hierarchical Hidden Markov Model (HHMM)
[29] in representing probabilistic information in the plan library. We denote
plan-steps in the plan library by qd

i , where i is the plan-step index and d is its
hierarchy depth, 1 ≤ d ≤ D. For each plan step, there are three probabilities:

Sequential transition. For each internal state qd
i , there is a state transition

probability matrix denoted by Aqd
= (aqd

i,j), where aqd

i,j = P (qd
j |qd

i) is the

probability of making a sequential transition from the ith plan-step to the jth

plan-step. Note that self-cycle transitions are also included in Aqd
.

Interruption. We denote by aqd

i,end a transition to a special plan step endd

which signifies an interruption of the sequence of current plan step qd
i , and

52

4.2 A Hybrid UPR Technique

immediate return of control to its parent, qd−1.

Decomposition transition. When the observed agent first selects a de-
composable plan step qd

i , it must select between its (first) children for execu-
tion. The decomposition transition probability is denoted Πqd

= πqd
(qd+1) =

P (qd+1
k |qd

i), the probability that plan-step qd
i will initially activate the plan-

step qd+1
k .

Observation Probabilities. Each leaf has an output emission probability
vector Bqd

= (bqd
(o)). This is the probability of observing o when the ob-

served agent is in plan-step qd. For presentation clarity, we treat observations
as children of leaves, and use the decomposition transition Πqd

for the leaves
as Bqd

.
In addition to transition and interruption probabilities, we add utility

information on the edges in the plan library. The utilities on the edges
represent the cost or gains to the observer, given that the observed agent
selects the edge. For the remainder of the work, we use the term cost to refer
to a positive value associated with an edge or node. As in the probabilistic
reasoning process, for each node we have three kinds of utilities: (a) Eqd

is
the sequential transition utility (cost) to the observer, conditioned on the

observed agent transitioning to the next plan-step, paralleling Aqd
; (b) eqd

i,end

is the interruption utility; and (c) Ψqd
is the decomposition utility to the

observer, paralleling Πqd
.

Figure 4.4 shows portion of the plan library of an agent walking with
or without a suitcase in the airport, occasionally putting it up and picking
it up again, an example discussed below. Note the end plan step at each
level, and the transition from each plan-step to this end plan step. This edge
represent the probability to interrupt. The utilities are shown in diamonds
(we omitted zero utilities, for clarity). The transitions allowing an agent to
leave a suitcase without picking it up are associated with large positive costs,
since they signify danger to the observer.

We use these probabilities and utilities to rank the hypotheses selected
by the SBR. First, we determine all paths from each hypothesized leaf in
time-stamp t− 1, to the leaf of each of the current state hypotheses in time
stamp t. Then, we traverse these paths multiplying the transition probabili-
ties on edges by the transition utilities, and accumulating the utilities along
the paths. If there is more than one way to get from the leaf of the previous
hypothesis to the leaf of the current hypothesis, then it should be accounted
for in the accumulation. Finally, we can determine the most costly current

53

4.2 A Hybrid UPR Technique

root

walk with
article

1

End
stopW putW

pickW

walk No
article

0.8

stopN End

0.8

0.1

0.1

0.3

0.1

0.1

0.4

0.1

0.1
0.2

0.1

0.7

0.1

0.1

0.8

-10

pickN

0.1

0.3

0.8

10

1

32

32

start

0.5

0.5

0.1

0.1

0.3

0.3

0.1
10

4

4

10

Figure 4.4: An example plan library. Recognition time-stamps (example in text)
appear in circles. Costs appear in diamonds.

54

4.2 A Hybrid UPR Technique

plan-step (the current-state hypothesis with maximum expected cost). Iden-
tically, we can also find the most likely current plan-step, for comparison.

Formally, let us denote hypotheses at time t − 1 (each a path from root
to leaf) as W = {W1,W2, ..., Wr}, and the hypotheses at time t as X =
{X1, X2, ..., Xl}. To calculate the maximum expected-utility (most costly)
hypothesis, we need to calculate for each current hypothesis Xi its expected
cost to the observer, U(Xi|O), where O is the sequence of observations thus
far. Due to the use of SBR to filter hypotheses, we know that the t − 1
observations in O have resulted in hypotheses W , and that observation t
results in new hypotheses X. Therefore, under assumption of Markovian
plan-step selection, U(Xi|O) = U(Xi|W).

The most costly hypothesis is computed in Equation 4.1. We use P (Wk),
calculated in the previous time-stamp, and multiply it by the probability and
the cost to the observer of taking this step from Wk to Xi. This is done for
all i, k.

X̂i = argmax
Xi

∑
Wk∈W

P (Wk) · P (Xi|Wk) · U(Xi|Wk) (4.1)

To calculate the expected utility E(Xi|Wk) = P (Xi|Wk) · U(Xi|Wk), let
Xi be composed of plan steps {x1

i , ..., x
m
i } and Wk be composed of {w1

k, ..., w
n
k}

(the upper index denotes depth). There are two ways in which the observed
agent could have gone from executing the leaf wn ∈ Wk to executing the leaf
xm ∈ Xi: First, there may exist w ∈ Wk, x ∈ Xi such that x and w have
a common parent, and x is a direct decomposition of this common parent.
Then, the expected utility is accumulated by climbing up vertices in Wk (by
taking interrupt edges) until we hit the common parent, and then climbing
down (by taking first child decomposition edges) to xm. Or, in the second
case, xm is reached by following a sequential edge from a vertex w to a vertex
x.

In both cases, the probability of climbing up from a leaf wn at depth n,
to a parent wj (where j < n) is given by

αj
wn =

j∏

d=n

ad
w,end (4.2)

55

4.2 A Hybrid UPR Technique

and the utility is given by

γj
wn =

j∑

d=n

ed
w,end. (4.3)

The probability of climbing down from a parent xj to a leaf xm is given by

βj
xm =

m∏

d=j

πxd

(xd+1) (4.4)

and the utility is given by

δj
xm =

m∑

d=j

ψxd

(xd+1). (4.5)

Note that we omitted the plan-step index, and left only the depth index, for
presentation clarity.

Using αj
w, βj

x, γj
w and δj

x, and summing over all possible j’s, we can
calculate the expected utility (Equation 4.6) for the two cases in which a
move from wn to xm is possible .

E(Xi|Wk) = P (Xi|Wk)× U(Xi|Wk)

=
1∑

j=n−1

[(αj
w · βj

x)× (γj
w + δj

x)× Eq(xj, wj)]

+
1∑

j=n−1

[αj
w · aj

w,x · βj
x]× (γj

w + ej
w,x + δj

x)

(4.6)

The first term covers the first case (transition via interruption to a com-
mon parent). Let Eq(xj, wj) return 1 if xj = wj, and 0 otherwise. The
summation over j accumulates the probability multiplying the utility of all
ways of interrupting a plan wn, climbing up from wn to the common parent
xj = wj, and following decompositions down to xm.

The second term covers the second case, where a sequential transition is
taken. aj

w,x is the probability of taking a sequential edge from wj to xj, given
that such an edge exists (aj

w,x > 0), and that the observed agent is done
in wj. To calculate the expected utility, we first multiply the probability of

56

4.2 A Hybrid UPR Technique

climbing up to a plan-step that has a sequential transition to a parent of
xm, then we multiply in the probability of taking the transition, and then we
multiply in the probability of climbing down again to xm. Then, we multiply
in the utility summation along this path.

A naive algorithm for computing the expected costs of hypotheses at time
t can be expensive to run. It would go over all leaves of the paths in t−1 and
for each of these, traverse the plan library until getting to all leaves of paths
we got in time-stamp t. The worst-case complexity of this process is O(N2T),
where N is the plan library size, and T is the number of observations.

4.2.2 Efficient UPR Hybrid Algorithms

We developed a set of algorithms that calculates the expected utilities of
hypotheses (Equation 4.1) in worst-case runtime complexity O(NDT), where
D is the depth of the plan library (N ,T are as above). The algorithms are
based on the observation that the structural constraints on the plan library
are such, that all the paths from any path (hypothesis) true at time t− 1, to
a given hypothesis Xi, true at time t, must necessarily go through a single
node S that is a part of Xi. Moreover, S is necessarily a common node to
Xi and one or more paths at time t− 1. If we can compute αS and γS up to
this node S, then we could propagate from it to all paths X in which it is a
part, that are true at time t. In other words, we can reuse the summation
αS and γS for all hypotheses in which S participates.

This translates into the following procedure. We begin with the leaves
of all t − 1 hypotheses Wk (1 ≤ k ≤ n). We sum the utilities and multiply
the probabilities while climbing up from the leaves along the hierarchy, all
the way to the root, storing intermediate results in the internal nodes wj

(plan-steps) of the hierarchy. We then look for internal nodes (i) that have
a child marked at time t (i.e., wj is a common parent, Eq(wj, xj) is true);
or (ii) that have a sequential transition to an internal node marked at time
t (i.e., aj

w,x > 0). A node (marked time t) that satisfies either of these cases
is one through which one or more time t hypotheses Xi pass, i.e., a node
S as above. We then propagate down the calculated probability and utility
downward (βS and δS).

This process is described in Algorithms 1–3. The CalcProbAndUtils al-
gorithm (Algorithm 9) calculates the probabilities and utilities of all valid
hypotheses that the symbolic algorithm had returned (Lines 1–2), normal-
izes these probabilities (Line 3) and find the hypothesis with the maximum

57

4.2 A Hybrid UPR Technique

probability and hypothesis with the maximum utility (Line 4). To calculate
these probabilities and utilities, it goes over all matching paths M in time
stamp t − 1, we got from SBR (which we did not visit yet) and calls the
PropagateUpAndDown algorithm (Algorithm 10).

The PropagateUpAndDown algorithm (Algorithm 10) calculates P ,
which holds the probability from paths in t − 1, and calculates E, which
holds the expected utility from paths in t− 1. The algorithm first initialize
P and E with the probability and expected utility of B that was calculated
in t − 1, were B is a leaf of one of the paths from t − 1. It also mark B
as visited, not to calculated it twice. Second, it propagate P and E to be-
haviors that have sequential edges from B with tag t and to B itself if it
has self cycle with tag t (Lines 5–8). This propagation is done by calling
CalcDown algorithm (Algorithm 11), that will be described later. Then, the
PropagateUpAndDown algorithm goes up along the hierarchy from the leaf
B, accumulating the probabilities and utilities (P and U) from time t− 1 by
recursive call to PropagateUpAndDown algorithm (Lines 11–17) and prop-
agating them down to leaves that marked with time-stamp t (Lines 18–23)
using the CalcDown algorithm (Algorithm 11).

The CalcDown algorithm (Algorithm 11) goes down along the hierarchy
and multiplies probabilities and accumulate utilities (Lines 1–2) until reach-
ing the leaf of path at time t. When reaching to leaf node (Line 3) it adds
the probability to the probability of this node and adds the utility to the
utility of the node (Lines 4–5). Therefore, the probabilities and utilities of
the leaves are saved in the tree in its leaves, and can be collected, normalized
and analyzed later by algorithm 9.

Algorithm 9 CalcProbAndUtils(SBR t − 1 results W ,SBR t results X, Plan
Library g, Time-stamp t)
1: for all v ∈ W not visited do
2: PropagateUpAndDown(v, g, t, root(g))
3: Normalize(X, g, t)
4: TopU ← FindMaxU(X,g,t)

To illustrate these UPR algorithms in action, let us examine a portion
of a plan library in Figure 4.5. Suppose that in time t − 1 the SBR had
returned that the two plan-steps C and D are matching, and G in time-
stamp t. To calculate the expected utility with the naive algorithm, we
would traverse the plan library in the following manner: E(G|C,D) = (αA

C ·

58

4.2 A Hybrid UPR Technique

Algorithm 10 PropagateUpAndDown(SBR t− 1 path v, Plan Library g, Time-
stamp t, End Plan r)
1: B ← leaf(v)
2: P ← P (B, t− 1)
3: E ← E(B, t− 1)
4: Mark B as visited
5: S ← All behaviors tagged with t with sequential edge from B
6: for all s ∈ S do
7: CalcDown(P, aB,s, E, eB,s, B)
8: if ∃ Self cycle on B tagged with t then
9: CalcDown(P, aB,B, E, eB,B, B)

10: while B 6= r do
11: P ← P × aB,end

12: E ← E + P × eB,end

13: B ← Parent(B)
14: C ← All children of B tagged with t− 1 and not visited
15: for all c ∈ C do
16: P ← P + PropagateProbUpAndDown(leaf(c), g, t, B)
17: E ← E + PropagateProbUpAndDown(leaf(c), g, t, B)
18: C ← All children of B tagged with t
19: for all c ∈ C do
20: CalcDown(P, ac,end ×ΠB,c, E, ec,end + ΨB,c, c)
21: S ← sequentialEdges(B, t)
22: for all s ∈ S do
23: CalcDown(P, aB,s, E, eB,s, B)
24: return(P, E)

Algorithm 11 CalcDown(probability P , probability p, expected utility E,utility
u,Plan B, Plan Library g, Time-stamp t)
1: P ← P × p
2: E ← E × p + u× p
3: if isLeaf(B) then
4: P (B, t) ← P (B, t) + P
5: E(B, t) ← E(B, t) + E
6: else
7: C ← children of B that tagged with t
8: for all c ∈ C do
9: CalcDown(P, ΠB,c × aB,B, E, ψB,c + eB,B, B)

59

4.2 A Hybrid UPR Technique

A

B

C D

E

F G

tt-1 t-1

Figure 4.5: Efficient UPR Example.

βG
A + αA

D · βG
A)× (γA

C + δG
A + γA

D + δG
A). With the efficient UPR: E(G|C, D) =

[(αB
C +αB

D)×αA
B×βG

A]× (γB
C +γB

D +γA
B + δG

A). Meaning that the probabilities
and utilities of C and D are stored in B, so we are not traversing the plan
library more than necessary.

Complexity Analysis. The run-time complexity of the algorithm is
O(NDT): We first propagate the t − 1 expected utilities up the hierarchy,
not visiting plans that already been visited, in worst-case time O(N). Then,
calculating β for different depths, for paths tagged with t, is O(ND). We do
this for every observation, of which there are T , thus the overall complexity
is O(NDT).

Note the reliance on the underlying SBR: Since the symbolic recognizer
provides the possible paths at times t − 1, t, we do not need to consider all
possible paths, and can begin the propagation process directly at the leaves
of paths. Hopefully, many paths are disqualified by the symbolic algorithm,
due to temporal coherence; in that case, we expect performance in practice
to improve significantly over the worst case complexity.

4.2.3 Discussion

We showed here a hybrid UPR technique that reduces the complexity of
influence diagrams. However, the technique sacrifices expressivity:

• Multiple goals. The hybrid UPR can not handle multiple goals, where
the agent pursuing number of goals in parallel. The agent may begin
with one plan, and interrupt its execution to execute another, only
to return to the remaining plan steps in the first plan. The Hybrid-
UPR can not handle this capability, though this is possible in Influence

60

4.2 A Hybrid UPR Technique

Diagram.

• Other evidence. The hybrid UPR does not support inserting context
(like destination in the previous example in Section 4.1.2). The use of
context is important for adding different costs for different contexts.
For example costs are different for liquor-store or jewelry store.

• Markovian assumption. The Hybrid UPR is based on Hierarchical
HMM which assumes the Markov property, therefore is less general
from the influence diagram that are based on Bayesian Networks.

61

Chapter 5

Recognizing Multi-Agent
Dynamic Groups

This Chapter introduces Dynamic Hierarchy Group Model (DHGM), a
dynamically-maintained structure for tracking groups and sub-groups when
the groups split into sub-groups and/or merge with other groups. We use
a plan recognizer with each agent. For this purpose, we use here a highly
efficient symbolic plan recognizer (SBR) introduced in Chapter 3 that is
used to filter through hypotheses, maintaining only those that are consistent
with the observations. Note, however, that any plan recognizer can be used.
Then, we provide its complexity analysis in Section 5.2. Section 5.3 shows
an illustrative application for detecting suspicious behavior using DHGM.

5.1 Dynamic Hierarchy Group Model

After getting all current state hypotheses from the symbolic recognizer, the
next step is to determine the agent’s group. This is done by using the Dy-
namic Hierarchy Group Model (DHGM), described in this section.

The DHGM is a dynamically-maintained structure that reflects the cur-
rent groups of the agents, and the history of these groups. This structure is
built dynamically with every observation. Each node in the DHGM repre-
sents a group with one or more agents that are executing the same behavior
(i.e,. the plan recognizer identified the same plan-steps in the plan library for
this group). Each node in the DHGM points to leaves in the plan library that
the agent is assumed to be executing. Each node also holds a time-stamp

62

5.1 Dynamic Hierarchy Group Model

54321A

PG

Figure 5.1: Example Dynamic Hierarchy Group Model noted with G.

counter that counts the number of consecutive time-stamps that the agent
the group were in this branch. From each node there are branches to sub-
groups, meaning that the group had been split and executing now different
plan-steps in the plan library. When the agent returns to its group, or join
other sub-group, the branches are merged.

Figure 5.1 shows portion of a DHGM (noted with G) that points to plan
library P . On top there is an array of agents A, that points to their place in
the Group Hierarchy. In this figure, agents 1,2 and 4 belong to one sub-group
and agents 3,5 belong to a second sub-group.

The DHGM maintenance process is described in Algorithms 1–2. The
GroupDetection algorithm (Algorithm 12) initializes the DHGM with
single root node that all agents belongs to this node, and it points to the given
plan library. With each new observation it calls UpdateGroup algorithm
(Algorithm 13).

The UpdateGroup algorithm (Algorithm 13), traverses the DHGM bot-
tom up. For each leaf node it executes the SBR algorithm on the current
observation for all agents that belong to this leaf (Algorithm 13 line 7), with

63

5.1 Dynamic Hierarchy Group Model

the appropriate plan library and time-stamp tag. The SBR algorithm re-
turns a set of paths through the hierarchy, that the observed agent may
have executed according to the observation. The Algorithm then updates
the temporaryAgentArray that holds all SBR results for the current time-
stamp (Algorithm 13 line 8). Then, it updates the DHGM according to the
temporaryAgentArray: it creates a new branch for agents that have the
same SBR result and does not have an appropriate branch yet (Algorithm
13 line 9). The algorithm also update the time-stamp counter of the group,
to know how long the group exists. If new branches were created, then the
time-stamp counter is initialized to 1. If the branches are the same we add
one to the counter (Algorithm 13 lines 10–13). Finally, it merges all leaves
that have the same results (points to same leaves in the plan library), mean-
ing that after we updated them they have the same results as other branches
in the same level.

Algorithm 12 GroupDetection(Plan Library p)
1: Create Group Hierarchy G with a single node
2: Initialize G with all agents belongs to its single node
3: Initialize G with pointer to root of plan library p
4: while Observations 6= Empty do
5: t ← t + 1
6: UpdateGroup(root(G), t, Observations)

An example: We will demonstrate the process in action with a simple
example shown in Figure 5.2 and the plan library in 5.3. Assume that there
are 100 agents in the airport that execute the position plan-step in time-
stamp t = 1. The DHGM here has one root node with 100 agents and points
to all position instances in the plan library (note that for presentation clarity,
Figure 5.2 points to the plan-step name and not to all instances in the plan
library).

Now, in time-stamp t = 2 there are 50 agents that continue executing the
position and 50 other agents execute the X-Ray plan-step, 20 without bags
and 30 with bags. The DHGM will have the following structure a root node
with 3 leaves: one for position, one for x-Ray with bag and one for X-Ray
without bag. Now assume that in time stamp t = 3 the 50 agents that were
in the security with or without bags, now execute the gate plan-step, and
the 50 agents moved from the position to execute the X-Ray with or without
bag (25 in each group). Now the DHGM will have under root two nodes, one

64

5.2 Complexity Analysis

Algorithm 13 UpdateGroup(Group Hierarchy Node groupNode, Time-stamp
t, Observation obsrvArr)
1: for all child c that is not a leaf of groupNode do
2: UpdateGroup(c, t, obsrvArr)
3: for all child c that is a leaf of groupNode do
4: create empty temporaryAgentArray
5: for all agent a∈ groupNode do
6: p ← plan library that groupNode points on
7: ExecuteSBR(t, obsrvArr[a], p)
8: update temporaryAgentArray[a] to point on new plan-steps
9: create branches according to the temporaryAgentArray

10: if if no branches were created then
11: increase time-stamp counter of this leaf
12: else
13: initialize time-stamp counter of this leaf
14: for all child c that is a leafofgroupNode do
15: merge nodes if points to same plan steps
16: initialize time-stamp counter of this leaf

that points to the gate instances in the plan library and one that splits into
2 nodes: X-ray with bag and X-Ray without bag. In time stamp t = 4 all
agents in the X-Ray without bag execute the gate plan-step, and under X-
Ray with bag 24 agents execute the gate and one agent execute position. The
DHGM will have under root two nodes, one that points to the gate instances
in the plan library and one that splits into 2 nodes, one node with 25 agents
that execute the gate plan-step and another node that splits to two nodes:
one with 24 agents that execute gate and 1 agent that executes position.
Note that time-stamps counters were omitted, for presentation clarity.

Note that the Dynamic Hierarchy Group Model can either hold multiple
instances of the plan library (for each group), or one plan library with dif-
ferent time-stamp tags for each group. See also time and space complexity
in the next section.

5.2 Complexity Analysis

Using the Dynamic Hierarchy Group Model for plan recognition in multi-
agent scenarios is less expensive in space terms than operating individual plan

65

5.2 Complexity Analysis

100

Position

Position

50 20

t=1

30

With
Bag

Without
Bag

t=2

50 50

With
Bag

Without
Bag

t=3

gate
25 25

50 50

t=4

2525

124

100

100 100

gate

gate

gate Position

Figure 5.2: Example of the process of creating Dynamic Hierarchy Group Model.
The Number on the node denotes number of agents belong to this group.

66

5.2 Complexity Analysis

root

securityentrance board

position

coffee

X-ray

shop

position

without
bag

position X-ray position coffee gate

with
bag

without
bag

With
bag

2

1

3

1

1 1 2

2

2

222

2 31 1

toilet

Figure 5.3: An example of plan library.

67

5.3 An Illustrative Application

recognition method for each agent. We do not need to hold a plan library for
each agent, but to use the same plan library with different notations for each
group. Therefore the space complexity is O(Lg), where L is the plan library
size and g is the maximum number of groups. This should be compared to
O(Ln), where n is the number of agents.

The run-time complexity is larger than running individual plan recogni-
tion, since we not only run the SBR algorithm, but also check the connections
between agents. we go over the group hierarchy O(g) bottom up, where g is
the number of groups. For each node: we execute SBR (Algorithm 13 line 7):
O(LD), where L is the plan library size, and D is the depth of the plan library.
This is done for all agents in this node O(LDn) (Algorithm 13 line 5), where
n is the number of agents in the group. Then, compare all agents results
O(nlogn) with sort (Algorithm 13 line 9). Therefore, O(gnLD + gnlogn).
The gn (number of groups multiply the size of the group) is actually the
total number of agents N. Therefore, it is O(NLD + Nlogn), this is for one
observation. It will be O(TNLD + TNlogn), where T is the number of
observations.

5.3 An Illustrative Application

In this section we present an initial method for detecting suspicious behavior
using DHGM. There are suspicious behaviors that can be captured only
when tracking agents with respect to their group and not only as individuals.
For this purpose, we propose a number of heuristics for detecting suspicious
behavior, using the information from the Dynamic Hierarchy Group Model
that was introduced in Section 5.1.

The first heuristic we propose is that agents that behave differently from
other agents in the same group will be considered suspicious. For example,
passengers that behave differently from other passengers in the airport (not
standing with all other passengers in the line).

We consider an agent or group of agents as behaving differently from other
agents in the same group, and therefore suspicious, if the following conditions
hold: (a) The agent did not return to his group k consecutive time-stamps
(where k is a constant that is application-dependent); (b) The rest of the
group is m times bigger than the group of suspects (where m is a constant
that is application-dependent). These conditions can be extended as needed
for specific application and conditions. The process of checking for these con-

68

5.3 An Illustrative Application

ditions given a DHGM is described in Algorithm CheckSuspiciousBehavior
(algorithm 14).

Using the DHGM we can identify agents that behave differently from
other agents in the same group. For example, let’s use the DHGM in the
example in 5.2, we can see from the information on the DHGM that there is
only one agent out of 24 that executes the position plan-step, and did not
get to the gate like other agents. We would like to keep an open eye on this
agent, since she might be dangerous.

Algorithm 14 CheckSuspiciousBehavior(Group Hierarchy Node groupNode)
1: for all child c1 that is a leaf of groupNode do
2: for all child c2 that is a leaf of groupNode do
3: if —number of agents in c1—< m×—number of agents in c2— then
4: if number of time-stamps counter in c1> k then
5: c1 group is suspicious

Previous work has shown that given a model of hierarchical relationship
between agents, one can identify deviations from the model [46] (which in-
dicate anomalies), and may increase efficiency of recognition [49]. However,
this previous work is limited to very specific social structures, where agents
form teams based on agreements as to specific plans. In order to detect dis-
agreements, the monitoring agent must first know which plans are ideally
to be agreed upon. In contrast, in our work we do not have static social
structure that is given in advance, but observations on dynamically changing
structure of groups. For example, a group of passengers in the airport may
seem like one group when standing in the security check line, and afterward
when splitting into two groups, the structure needs to be modified.

The second heuristic we propose is to explicitly clear an agent, if it be-
haves normally with respect to its group’s history. For example consider the
queue-cutting problem, where two friends are standing in a specific position
in the security line, when one goes out to the restrooms, and returns to join
her friend. If we would not save the history of the group, we may consider
this person to be a suspect of cutting in line. However, when knowing the
history of the group, we can explicitly clear her.

The queue-cutting problem can be solved using the DHGM. In this case
the SBR algorithm will return that there are no results for this agent accord-
ing to the plan library. This will happen since the propagation phase has
failed; therefore, we can check whether the matching phase has resulted with

69

5.3 An Illustrative Application

matching plan-steps and compare them to the agent’s history group. If the
agent is executing the same plan-step as some of its group members, then
we consider it as a legal behavior, and do not consider her a suspect as the
single agent SBR would do.

70

Part II

Detecting Anomalous and
Suspicious Behavior

71

In this part we apply the plan recognition algorithms described in Part I,
to realistic problems in surveillance and activity recognition. In particular,
we consider challenges in detecting anomalous and suspicious behaviors.

We begin by considering detection of anomalous behavior (Chapter 6).
Here, the plan library represents normal behavior; any activity which does
not match the plan library is considered abnormal. This approach can be
effective in applications where we have few or no examples of suspicious
behavior (which the system is to detect), but many examples for normal
behavior (which the system should ignore). This is the case, for instance, in
many vision-based surveillance systems, in public places. A symbolic plan
recognition system is useful in recognition of abnormal patterns, such as
walking in the wrong direction, taking more than usual amount of time to
get to the security check, etc. The symbolic recognizer can efficiently match
activities to the plan library and rule out hypotheses that do not match.
When the resulting set of matching hypotheses is empty, the sequence of
observations is flagged as anomalous. The symbolic algorithm is very fast,
since it rejects or passes hypotheses without ranking them.

However, detection of abnormal behavior is not sufficient. There are cases
where a normal behavior should be treated as suspicious. In these cases, we
cannot remove the behavior from the plan-library (so as to make its detection
possible using the anomalous behavior detection scheme outlined above), and
yet we expect the system to detect it and flag it.

In Chapter 7, we turn to examine the use of UPR for recognizing suspi-
cious behavior. Here the plan library explicitly encodes behavior to be recog-
nized, along side any costs associated with the recognition of this behavior.
This allows the UPR system to rank hypotheses based on their expected cost
to the observing agent. As we shall see, this leads to being able to recognize
potentially dangerous situations, despite their low likelihood.

72

Chapter 6

Detecting Anomalous Behavior

There have been several attempts at utilizing plan recognition for recognition
of suspicious, erroneous, or anomalous behavior, e.g., [18,25,28,32,56,66,91].
These have mostly operated under the assumption that a plan library is
available that covers this intended negative behavior, and thus recognition of
hypotheses implying such behavior is treated no differently from recognition
of hypotheses implying no suspicion.

Recently, a different approach has been taken by several researchers in
which the plan library is used in an inverse fashion. The plan library is
limited to covering only positive behavior. When a plan-recognizer is unable
to match observations against the library (or generates hypotheses with very
low likelihood), an anomaly is announced [27,55].

We propose an anomalous behavior recognition system, presented in Fig-
ure 6.1. The input of the system is an observation sequence. The system is
composed of an SBR (Symbolic Plan Recognition) module, which extracts
coherent hypotheses from the observation sequence. If the set of hypotheses
is empty, it declares the observation sequence as anomalous.

The symbolic plan-recognition algorithm that was introduced in Chap-
ter 3 is useful in recognition of abnormal behavior, since it is very fast (no
need in ranking hypotheses), and can handle key capabilities required by
modern surveillance applications.

We evaluate the use of SBR for anomalous behavior recognition, using
real-world data from machine vision trackers, which track movements of peo-
ple, and report on their coordinate positions. In Section 6.1 we describe the
experiments setup. Section 6.2 describes in details the experiments we con-
ducted, along with their results on video clips and data from the CAVIAR

73

6.1 Experiments Setup

SBR

Set Of Hypotheses

Observations sequence

Anomalous Behavior

Plan
Library

Empty ?
Yes

No

Figure 6.1: Anomalous Recognition System. Inputs and outputs for the system
are in dashed arrows.

project [1]. Section 6.3 presents results from data sets gathered as part of
our participation in the AVNET Consortium, which developed technologies
for detection of criminal or otherwise suspicious objects and suspects.

6.1 Experiments Setup

We conduct our experiments in the context of a vision-based surveillance
application. The plan library consists of discretized trajectories which cor-
respond to known-to-be-valid trajectories. We use a learning algorithm, de-
scribed briefly in Section 6.1.1, to construct this plan library. To evaluate
the results of the SBR algorithms we use precision and recall measurements
that are widely used in statistical classification, as described in Section 6.1.2.

6.1.1 The Learning Algorithm

We use a simple learning algorithm that was developed for the purpose of
building plan recognition libraries based on examples of positive (valid) tra-
jectories only. The learning algorithm is not part of this dissertation, and is
fully described in [47,48]. We provide a description below of its inputs and

74

6.1 Experiments Setup

Figure 6.2: Result of running naive learning algorithm on one trajectory

outputs, as those are of interest here.
The learning algorithm L receives a training set that contains observa-

tion sequences S. Each observation sequence s ∈ S is one trajectory of an
individual target that composed of all observations (samples) oi, where i is
an ordering index within s. Each observation oi is a tuple 〈xi, yi, ti〉, where
xi, yi are Cartesian coordinates of points within W , and t is a time index.

The learning algorithm divides the work area W using a regular square-
based grid. Each observation 〈xi, yi, ti〉 is assigned a square that contains
this points. For each trajectory of an individual target (s) in the training
set, it creates a sequence of squares that represents that trajectory.

The output of the algorithm is a set K of discretized-trajectories, each
a sequence of grid cells, that are used together as the plan library for the
recognition algorithm. Figure 6.2 shows a work area that is divided into
nine squares, with one trajectory. The resulting output of the algorithm is a
sequence of squares that defines that trajectory (on the right of the figure).

The grid’s square cell size is an input for the learning algorithm. By
adjusting the size of the square we can influence the relaxation of the model.
By decreasing the size of the square the learned library is more strict (there
is less generalization); and in contrast, too large a value would cause over-
generalization. Small square size may result in over-fitting; a trajectory that
is very similar to an already seen trajectory, but differs slightly will not fit
the model. By increasing the size of the square, the model is more general
and it less sensitive to noise, but trajectories that are not similar might fit.

People are rarely twice in the exact same position. As a result, the
training set may contain many sample trajectories that differ by very small
distance. Part of the challenge in addressing this lies in adjusting the square

75

6.1 Experiments Setup

987

654

321

987

654

321

Figure 6.3: Demonstrating position overlap. Added position overlap for square
number 5.

size, as described above. However, often a part of a trajectory would fall just
outside the cell that contains the other examples of the same trajectories.

To solve this, the learning algorithm has another input parameter, called
Position Overlap Size. The position overlap prevents over-fitting to the train-
ing data, by expanding each square such that it overlaps with those around
it (see Figure 6.3, where the position overlap is shown for square number
5). Any point in a trajectory that lies in an overlapping area is defined to
match both the overlapping square, as well as the square within which it
falls. Thus, for instance, a point within cell 3 in Figure 6.3, at its bottom
left corner (within the darkened overlapping area of cell 5) would match cell
3 and 5, as well as 6 and 2 (since these cells also have their own overlapping
areas). Essentially, this is the analogous to having non-zero observation emit-
ting probabilities for the same observation, from different states in a Hidden
Markov Model.

76

6.1 Experiments Setup

6.1.2 Performance Measurements

To evaluate the results we use two widely used measurements in statistical
classification precision and recall [90], defined below. These are always used
in reference to a testing set, which contains the trajectories for which we want
to measure the performance of the system.

Definition 7. True Positives. Number of trajectories correctly labelled as
anomalous.

Definition 8. False Positives. Number of items incorrectly labelled as anom-
alous.

Definition 9. False Negatives. Number of items which were not labelled as
anomalous but should have been.

Using these definitions, we can define the precision and recall measures.

Definition 10. Precision. Number of true positives divided by the total
number of elements labelled as belonging to the class (sum of true positives
and false positives).

Definition 11. Recall. Number of true positives divided by the total number
of elements that actually belong to the class (sum of true positives and false
negatives).

In our case, we have two classes: anomalous and non-anomalous. There-
fore, the true positives are the number of anomalous trajectories that were
classified correctly as such. The false positives are the number of non-
anomalous trajectories that were mistakenly classified as anomalous. The
false negatives are the number of anomalous trajectories that were not clas-
sified as anomalous (but should have been).

A perfect precision score of 1 means that every anomalous trajectory
that was labelled as such was indeed anomalous (but this says nothing on
anomalous trajectories that were classified as non-anomalous). A perfect
recall score of 1 means that all anomalous trajectories were found (but says
nothing about how many non-anomalous trajectories were also classified as
anomalous).

77

6.2 CAVIAR Data

Figure 6.4: A typical frame of image sequence in CAVIAR Project

6.2 CAVIAR Data

We utilize two sets of real-world data to evaluate SBR’s performance as an
anomalous behavior recognizer. Experiments with the first set are described
in this section. The second set is described in Section 6.3.

The first set of experiments were conducted on video clips and data from
the CAVIAR Project1 [1]. The CAVIAR project contains a number of video
clips with different scenarios of interest: People walking alone, standing in
one place and browsing, etc. The videos are 384×288 pixels, 25 frames
per second. Figure 6.4 shows a typical frame. The ground truth tracking
data for these sequences, in pixel coordinates, is available as well, and was
determined by hand-labelling the images (this was done by the CAVIAR data
maintainers).

1EC Funded CAVIAR project/IST 2001 37540, found at URL:
http://homepages.inf.ed.ac.uk/rbf/CAVIAR/

78

6.2 CAVIAR Data

We use the ground-truth data to simulate the output of realistic track-
ers, at different levels of accuracy. To do this, each ground-truth point is
converted by homography to position, given in centimeters, in the 2D plane
on which the subjects move. We add then noise with normal distribution
to simulate tracking errors. Higher variance simulates less accurate track-
ers, and low variance simulates more accurate trackers. In the experiments
reported on below, we use a standard deviation of 11cm diagonal (8cm ver-
tical and horizontal). The choice of noise model and parameters is based on
information about state-of-the-art trackers (e.g., [68]).

To create a large set of data for the experiments (representing differ-
ent tracking instances, i.e., the tracking results from many different video
clips), we simulated multiple trajectories of different scenarios, and trained
the learning system on them, to construct a plan library. This plan library
was then used with different trajectories to test the ability of the algorithms
to detect abnormal behavior.

6.2.1 Simple Abnormal Behavior

In the first experiment we tested simple abnormal behavior. We simulated
three kinds of trajectories:

1. Curved path A. Taken from the first set One person walking straight
line and return scenario in CAVIAR, the walking straight (without the
return path). This path was defined by us as the basis for normal
behavior.

2. Curved path B. Taken from the first set One person walking straight
scenario in CAVIAR, which is similar to the above, but curves differ-
ently towards the end. We use this to evaluate the system’s ability to
detect abnormal behavior.

3. U-Turn. Taken from the first set One person walking straight line and
return scenario in CAVIAR. Identical to Curve path A as above, but
then at the end all subjects turn around and go back.

Figure 6.5 shows the three kind of trajectories. The arrow shows the
starting position of the trajectories. The end-points lie at the other end
(movement right to left).

We created 100 simulated trajectories of each type, for a total of 300
trajectories. We trained a model on 100 noisy trajectories from Curved path

79

6.2 CAVIAR Data

Figure 6.5: Three Trajectories: Legal path (Curved Path A), suspicious path
(Curved Path B), and return path (U-Turn) from CAVIAR data. The arrow
points at the starting point.

A, using the learning system described in Section 6.1.1. In this experiment
we fixed the grid cell size to 55cm, and we vary the plan library relaxation
parameter (called Position Overlap Size in Section 6.1.1). The cell size was
chosen such that it covered the largest distance between two consecutive
points in the training set trajectories.

Figure 6.6 shows the true positives versus false positives. The x axis is the
plan library relaxation, and the y axis is the number of trajectories (subjects).
We can see that the system starts stabilizing in plan library relaxation of 11
(the number of false positives is zero), and after a plan library relaxation of
15 the system is too relaxed; the number of abnormal trajectories that are
not detected slowly increases.

80

6.2 CAVIAR Data

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100

Plan Library Relaxation

P
er

ce
nt

ag
e

of
 S

ub
je

ct
s

True positive
False positive

Figure 6.6: True positive vs. false positives on CAVIAR data.

81

6.2 CAVIAR Data

Figure 6.7 shows the precision and recall of the system. The x axis is the
plan library relaxation, and the y axis is the number of trajectories (subjects).
The precision increases till perfect score of 1 from relaxation 11. The recall
starts with perfect score of 1 and decreases slowly from relaxation 16. As in
figure 6.6, we can see that for values of plan library relaxation of 11–15, we
get perfect precision and perfect recall of 1.

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Plan Library Relaxation

pr
ec

is
io

n

precision
recall

Figure 6.7: Precision and recall on CAVIAR data.

Despite the optimistic picture that the results above portray, it is impor-
tant to remember that these results ignore the time for detection. However,
in practice the time for detection matters.

Figure 6.8 shows the time for detecting the abnormal behavior with stan-
dard deviation bars. The x axis is the plan library relaxation, and the y axis
is the time (sec) passed until detecting abnormal behavior. In this figure
we can see that until plan library relaxation of 12, the time for detection is
negative, since we detect too early before the abnormal behavior is taking

82

6.2 CAVIAR Data

place. Two seconds is the maximum of the graph, since this is the time that
the scene was over, therefore detecting at 2 seconds is too late.

−5 0 5 10 15 20 25 30
−6

−5

−4

−3

−2

−1

0

1

2

3

Plan Library Relaxation

T
im

e
(s

ec
)

Figure 6.8: Time for detection suspicious path on CAVIAR data.

Figure 6.9 shows the trade-off between detecting too late and detecting
too early as a function of the plan library relaxation (where too early is
before the split and too late is the end of the abnormal path). The x axis is
the plan library relaxation, and the y axis is the percentage of subjects that
were detected too early or too late. We can see that relaxation of 16 gives
the best results of 1% too early and 1% too late. After relaxation of 16, the
percentage of trajectories that we detect too late is slowly increases.

The recognition algorithm also capable of detecting anomaly behavior in
the direction, and not only in the position. The following experiment demon-
strate this capability; here, we evaluate the use of the system in identifying
the u-turn trajectories in the data-set. We sampled 100 instances of the
U-Turn trajectory with gaussian noise and checked the time for detection.

83

6.2 CAVIAR Data

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100

Plan Library Relaxation

pe
rc

en
ta

ge
 o

f s
ub

je
ct

s

Too Early
Too Late

Figure 6.9: Too early detection and too late detection on CAVIAR data.

84

6.2 CAVIAR Data

We trained a model on the same 100 noisy trajectories from Curved path A
that we used in the first experiment. We first checked the time for detecting
abnormal-behavior as u-turn.

Figure 6.10 shows the time for detecting abnormal behavior versus the
plan library relaxation. The x axis is the plan library relaxation, and the
y axis is the time (sec) passed until detecting the u-turn. We can see that
until plan library relaxation of about 10, the time for detection is negative,
since we detect too early before the u-turn behavior is taking place, and
the standard deviation is high. The maximum detection time is 2.5 seconds
after the turn is taking place. Figure 6.11 demonstrates the position on the
trajectory 1 second after the turn, 2 second after the turn and 10 seconds
after the turn.

−5 0 5 10 15 20 25 30
−14

−12

−10

−8

−6

−4

−2

0

2

4

6

Plan Library Relaxation

T
im

e
(s

ec
)

Figure 6.10: Time for detecting U Turn on CAVIAR data.

Figure 6.12 shows the precision and recall for the u-turn experiment as
function of the time. The plan library relaxation was set to 15, which is

85

6.2 CAVIAR Data

Figure 6.11: U Turn on CAVIAR data.

the best relaxation according to the first experiment. The precision has the
perfect score of 1, for plan relaxation of 15 (every suspect that was labelled
as suspect was indeed a suspect). The recall starts from score zero and
gradually increases, and after about 2.5 seconds it gets the perfect score of 1
(all suspects were found 2.5 seconds after the turn).

6.2.2 Duration

Detecting abnormal behavior based on spatial motion is not enough. There
is a need also to recognize abnormal behavior in time. For instance, we would
like to recognize as abnormal someone that stays in one place an exaggerated
amount of time, or that moves too slowly or too quickly.

Figure 6.13 shows a trajectory taken from the first set Person browsing
and reading for a while scenario in CAVIAR. In this scenario there is a
person that stands in one place for 7.8 seconds. For this experiment, this is
defined by us as normal. We sampled 100 instances of this trajectory with
gaussian noise and created a model with the learning system (described in
Section 6.1.1). Since the learning system does not have the capability of
learning durations, we learned on the trajectory without the waiting part,
then manually added the maximum duration in the plan library.

86

6.2 CAVIAR Data

0 0.5 1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1

1.2

Time (Sec)

P
re

ci
si

on

Recall
Precision

Figure 6.12: Precision and recall for U Turn versus time on CAVIAR data.

87

6.2 CAVIAR Data

Figure 6.13: Trajectory with waiting time.

We also add duration relaxation parameter to the model. We add this
parameter to the maximum duration. This is done for two reasons: (a) To
avoid over-fitting, noisy trajectory might not fit the model, since the duration
is slightly different; (b) an observation can fit more than one plan step (we
have position overlap). Therefore we count it as matching in more than one
plan step and increase the duration counter. Trajectory might not fit, since
we increased its counter more than necessary.

In this experiment we fixed the grid cell size at 55cm, and the plan li-
brary relaxation parameter to 15 (the best relaxation according to the first
experiment). We vary the duration relaxation parameter.

Figure 6.14 shows the time for detecting standing in one place behavior
versus the duration relaxation (sec). The x axis is the duration relaxation in
seconds, and the y axis is the time (sec) passed until detecting standing in
one place more than the normal wait of 7.8 seconds. We can see that until
duration relaxation of about 0.6 seconds, the time for detection is negative,
since we detect too early before the abnormal waiting behavior is taking
place, and the standard deviation is high. After duration relaxation of about
0.6 seconds, the recognition system detects abnormal waiting after about one
second.

88

6.2 CAVIAR Data

0 1 2 3 4 5 6 7 8 9
−30

−25

−20

−15

−10

−5

0

5

10

15

Duration Relaxation (Sec)

T
im

e
(S

ec
)

Figure 6.14: Time to detect standing in one place versus Duration Relaxation.

89

6.3 RAFAEL Data

Figure 6.15 shows the precision and recall for the duration experiment
as function of the duration relaxation(sec). The precision increases and gets
perfect score of 1 starting from duration relaxation of 0.6 seconds (every
trajectory that was labelled as such was indeed an anomalous trajectory,
after relaxation of 0.6 seconds). The recall starts from a perfect score 1.0
(all anomalous trajectories were found), and decreases after 6 seconds to
zero, since the model is too relaxed and anomalous trajectories are classified
incorrectly as normal.

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

Duration Relaxation (sec)

P
re

ci
si

on

Precision
recall

Figure 6.15: Number of suspects in the duration experiment.

6.3 RAFAEL Data

Parts of our work were funded through the AVNET consortium, a
government-funded project including multiple industrial and academic part-

90

6.3 RAFAEL Data

ners, for development of suspicious activity detection capabilities. As part
of this project, we were given the tracking results from a commercial vision-
based tracker, developed by RAFAEL.

We used the RAFAEL data sets in order to evaluate our algorithm. In the
first experiment, we got 164 trajectories, all with normal behavior. We ran a
10-fold cross validation test on the data set in order to test the performance.
We divided the whole set to 10 data sets, each contained 148 trajectories
for train, and 16 trajectories for test (except the last test that contained 20
trajectories for test and 144 for train). We learned a model with square size
fixed to be the size of the maximum step in the data (31), and the position
overlap to be 10.

We checked the number of false positives (the number of non-suspects
that mistakenly classified as suspects). Table 6.3 shows the results. We can
see that the number of false positives are maximum 1 out of 16 (6.25%). On
average (across the trials) the percentage of the false positives is 2.375%.

Test Number Percentage of False Positives
1 0
2 0
3 0
4 0
5 6.25%
6 6.25%
7 0
8 0
9 6.25%
10 5%

Table 6.1: Percentage of false positives in AVNET data.

The next two experiments evaluate the recognition of anomalous behavior
using the RAFAEL data-set. In the first experiment, we were given data set
consisted of 18 trajectories (432 single points). We learned on this data
a model, with grid size of 31 and position overlap of 10 (as in the first
experiment). We tested it against a single trajectory with u-turn pattern.
Figure 6.16 shows all the 18 trajectories, the turn pattern which was found
as suspicious marked in bold by the recognition system. The arrows point
on the start position and the turn position.

91

6.3 RAFAEL Data

Figure 6.16: Detecting U-Turn on AVNET data.

92

6.3 RAFAEL Data

In the second experiment of evaluating anomalous behavior, we were given
data set consisted of 151 trajectories (4908 single points). We learned on this
data a model, with grid size of 31 and position overlap of 10 (as in the first
experiment). We tested it against a single trajectory of standing in place for
a long duration. Figure 6.17 shows all the 151 trajectories, the trajectory
that was detected as suspicious by the recognition system marked is in bold.
The arrows point at the start position and the standing position.

Figure 6.17: Detecting standing for long time on AVNET data

93

Chapter 7

Detecting Suspicious Behavior

To demonstrate the novel use of UPR, and its efficient implementation, as
described in Chapter 4, we use hybrid anomalous and suspicious behavior
recognition system. Figure 7.1 presents the hybrid system (this is an ex-
tension to the anomalous system showed in Chapter 6). The input to the
system is an observation sequence. The system is composed from two mod-
ules: SBR (Symbolic Plan Recognition) and UPR (Utility Based Plan Recog-
nition). The SBR module extracts coherent hypotheses from the observa-
tion sequence. If the set of hypotheses is empty, it declares the observation
sequence as anomalous. If the set is not empty, then the hypotheses are
passed to the UPR module that compute the most expected-costly hypothe-
ses. When the expected cost of the top-ranked hypothesis reaches a given
threshold, the system declares that the observation sequence is suspicious.

We tested the capabilities of our system in three different recognition
tasks. The domain for the first task consisted of recognizing passengers that
leave articles unattended, as in the example above. In the second task we will
show how our algorithms can catch a dangerous driver that cuts between two
lanes repeatedly. The last experiment intends to show how previous work,
which has used costs heuristically [87], can now be recast in a principled
manner. All of these examples show that we should not ignore the observer
biases, since the most probable hypothesis sometimes mask hypotheses that
are important for the observer.

94

SBR

UPR

Set Of Hypotheses

Observations sequence

Anomalous Behavior

Suspicious Behavior

Plan
Library

Empty ?

High
Cost ?

Yes

No

Set Of Hypotheses

Yes

No

Figure 7.1: Suspicious Recognition System. Inputs and outputs for the system
are in dashed arrows.

95

7.1 Leaving Unattended Articles

7.1 Leaving Unattended Articles

It is important to track a person that leaves her articles unattended in the air-
port. It is difficult, if not impossible, to catch this behavior using only prob-
abilistic information. We examine the instantaneous recognition of costly
hypotheses.

We demonstrate the process using the plan library in Figure 4.4. This
plan library is used to track simulated passengers in an airport that walk
about carrying articles, which they may put down and pick up again. The
recognizer’s task is to recognize passengers that put something down, and
then continue to walk without it. Note that the task is difficult because the
plan-steps are hidden (e.g., we see a passenger bending, but cannot decide
whether it pick something up, put something down, or neither; we cannot
decide whether a person has an article when they walk).

For the purposes of a short example, suppose that in time t = 2 (Figure
4.4), the SBR had returned that the two plan-steps marked walk match the
observations (walkN means walking with no article, walkW signifies walking
with an article); in time t = 3 the two stop plan steps match (stopN and
stopW), and in time t = 4 the plan step pickN and plan step putW , match
(e.g., we saw that the observed agent was bending).

The probability in t = 4 will be P (putW |stopW) = 0.5 × 0.2 = 0.1 (the
probability of stopW in previous time-stamp is 0.5, then following sequential
link to putW), and in the same way P (pickN |stopN) = 0.5×0.3 = 0.15. Nor-
malizing the probabilities for the current time t = 4, P (putW |stopW) = 0.4
and P (pickN |stopN) = 0.6. The expected utility in time t = 4 is
U(putW |stopW) = P (putW |stopW) × E(putW |stopW) = 0.4 × 10 = 4.
The expected utility of pickN is zero. The expected costs, rather than like-
lihoods, raise suspicions of a passenger putting down an article (perhaps not
picking it up).

Let us examine a more detailed example. We generated the following
observations based on the plan library shown in Figure 4.4: Suppose that in
time stamps t = {1 − 5} the passenger walks in an airport, but we cannot
tell whether she has an dangerous article in her possession. In time-stamps
t = {6−7} she stops, then at time t = {8} we see her bending but can not tell
whether to put down or to pick up something. In time-stamps t = {10−12},
she walks again.

Figure 7.2 shows the results from the recognition process for these ob-
servations. The X-axis measures the sequence of observations in time. The

96

7.2 Catching a Dangerous Driver

probability of different leaves (corresponding to hypotheses) is shown on the
Y-axis in the upper graph. The expected costs are shown in the lower graph.
In both, the top-ranking hypothesis (after each observation), is the one whose
value on the Y-axis is maximal for the observation.

In the probabilistic version (upper graph), we can see that the probabil-
ities, in time t = {1 − 5}, are 0.5 since we have two possible hypotheses of
walking. with or without an article (walkW and walkN). Later when the
person stops there are again two hypotheses stopW and stopN . Then, in
t = {7} two plan steps match the observations: pickW and putN , where the
prior probability of pickN is greater than putN (after all, most passengers
do not leave items unattended). As a result, the most likely hypothesis for
the remainder of the sequence is that the passenger is currently walking with
her article in hand walkW.

In the lower graph we can see a plot of the hypotheses, ranked by expected
cost. At time t = 8 when the agent pick or put something, the cost is high
(equal to 5), then in time stamp t = {9− 12} the top-ranking hypothesis is
walkN, signifying that the passenger might have left an article unattended.
Note that the prior probabilities on the behavior of the passenger have not
changed. What is different here is the importance (cost) we attribute to
observed actions.

7.2 Catching a Dangerous Driver

Some behavior becomes increasingly costly, or increasingly gainful, if re-
peated. For example, a driver switching a lane once or twice is not necessar-
ily acting suspiciously. But a driver zigzagging across two lanes is dangerous.
We demonstrate here the ability to accumulate costs of the most costly hy-
potheses, in order to capture behavior whose expected costs are prohibitive
over time.

Figure 7.2 shows two lanes left and right in a continuous area, divided by
a gird. There are 2 straight trajectories and one zigzag trajectory from left
to right lane. From each position, the driver can begin moving to the next
cell in the row (straight), or to one of the diagonal cells. We emphasize that
the area and movements are continuous—the grid is only used to create a
discrete state-space for the plan library. Moreover, the state-space is hidden:
A car in the left lane may be mistakenly observed (with small probability)
to be in the right lane, and vice versa.

97

7.2 Catching a Dangerous Driver

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

Observation Time stamp

P
ro

ba
bi

lit
y

walkW
stopW
putW
pickW
walkN
stopN
pickN
start

0 2 4 6 8 10 12
0

1

2

3

4

5

Observation Time stamp

C
os

t

Figure 7.2: Leaving unattended articles: Probabilities and Costs

98

7.2 Catching a Dangerous Driver

Left Lane

Right Lane

Figure 7.3: Simulated trajectories for drivers.

Each grid-cell is a plan-step in the plan library. The associated probabil-
ities and utilities are as follows: The probability for remaining in a plan-step
(for all nodes) is 0.4. The probability of continuing in the same lane is 0.4.
The probability of moving to either diagonal is 0.2. All costs are zero, except
when moving diagonally, where the cost is 10. Observations are uncertain;
with 0.1 probability, an observation would incorrectly report on the driver
being in a given lane.

We generated 100 observation sequences (each of 20 observations) of a
zigzagging driver, and 100 sequences of a safe driver. The observations
were sampled (with noise) from the trajectories (i.e., with observation un-
certainty). For each sequence of observations we accumulated the cost of the
most costly hypothesis, along the 20 observations. We now have 100 samples
of the accumulated costs for a dangerous driver, and 100 samples of the costs
for a safe driver. Depending on a chosen threshold value, a safe driver may
be declared dangerous (if its accumulated cost is greater than the threshold),
and a dangerous driver might be declared safe (if its accumulated cost is
smaller than the threshold).

Figure 7.4 shows the confusion error rate as a function of the threshold.
The error rate measures the percentage of cases (out of 100) incorrectly
identified. The figure shows that a trade-off exists in setting the threshold,
in order to improve accuracy. Choosing a cost threshold at 50 will result in
high accuracy, in this particular case: All dangerous drivers will be identified
as dangerous, and yet 99 percent of safe drivers will be correctly identified
as safe.

99

7.2 Catching a Dangerous Driver

0 10 20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Threshold

E
rr

or
 R

at
e

Stright Lane behavior
Zigzag Lane behavior

Figure 7.4: Confusion error rates for different thresholds for dangerous and safe
drivers.

100

7.3 Air-Combat Environment

7.3 Air-Combat Environment

Tambe and Rosenbloom [87] used an example of agents in a simulated air-
combat environment to demonstrate the RESC plan recognition algorithm.
RESC heuristically prefers a single worst-case hypothesis, since an opponent
is likely to engage in the most harmful maneuver in an hostile environment.
The example used was of a air-combat maneuver, in [87] showed this heuris-
tic in action in a simulated air-combat, where the turning actions of the
opponent could be interpreted as either leading to it running away, or to
its shooting a missile. RESC prefers the hypothesis that the opponent is
shooting. However, unlike UPR, RESC will always prefer this hypothesis,
regardless of its likelihood, and this has proven problematic [87]. Moreover,
given several worst-case hypotheses, RESC will choose arbitrarily a single hy-
pothesis to commit to, again regardless of its likelihood. Additional heuristics
were therefore devised to control RESC’s worst-case strategy [87].

We generalize this example to show UPR subsumes RESC’s heuristic in
a principled manner. Suppose instead of shooting a missile (which has in-
finite cost) vs. running away, we consider hypotheses of invading air-space
vs. runaway, where invading the observer’s air-space is costly for it, but not
fatal. Figure 7.5 shows models of two types of opponents: An aggressive op-
ponent (left sub-figure) that is more likely to shoot (0.8 a-priori probability)
than to run away (0.2) , and a cowardly opponent (right sub-figure) that is
more likely to run away (complement likelihoods). Note that these models
are structurally the same; the assigned probabilities reflect the a-priori pref-
erences of the different opponent types. Thus an observation matching both
hypotheses will simply lead to both of them being possible, with different
likelihoods. The maximum posterior hypothesis in the aggressive case will
be that the opponent is trying to invade our airspace. In the cowardly case,
it would be that the opponent is running away. RESC’s heuristic would lead
it to always selecting the aggressive case, regardless of the likelihood.

In contrast, UPR incorporates the biases of an observing pilot much more
cleanly. Because it takes the likelihood of hypotheses into account in comput-
ing the expected cost, it can ignore sufficiently improbable (but still possible)
worst-case hypotheses, in a principled manner. Moreover, UPR also allows
modeling optimistic observers, who prefer best-case hypotheses.

Table 7.1 presents three cost models. In the first case, the runaway plan-
step will get zero cost, and invade a high cost (10). This is an observer who
is worried that its airspace being invaded, but not gaining anything from

101

7.3 Air-Combat Environment

root

Runaway Missile

0.2 0.8

root

Runaway Missile

0.7 0.3

Aggressive Opponent Coward Opponent

Figure 7.5: Air-Combat Environment. Two types of opponents.

Runaway Missile
Case A 0 10
Case B −10 10
Case C 10 10

Table 7.1: Three cases of utilities for Figure 7.5.

scaring the opponent away. In the second case the runaway plan-step will
get negative cost (i.e., a gain for the observer). In the third case there are
the same costs. Tables 7.2 and 7.3 show the recognition results. The first
row shows the results of following only the probabilistic reasoning in each
model. The next three rows show the hypothesis costs for each hypothesis,
in each of the three cases in Table 7.1.

In the cases of the aggressive opponent, both the most costly or the most
probable hypothesis is the invade hypothesis. However, in the cowardly
opponent case, the answer depends on the utility model. In cases A and
B, where we gave high cost for missile, the most probable hypothesis stays
runaway but the costly hypothesis is missile. In the third case, C, since we
gave neutral costs (same for the two plan-steps), we got a result as in the
probability model, meaning runaway. The conclusion is that the probabilistic
model is not enough in case we want to incorporate biases of the observer,
in this case that the missile plan-step is harmful for the observer.

This generalization of the original example in [87] demonstrates that the
heuristic worst-case preference of RESC is subsumed by the principled use

102

7.3 Air-Combat Environment

Runaway Missile
Probabilistic 0.2 0.8

Cost A 0 8
Cost B −2 8
Cost C 2 8

Table 7.2: Aggressive opponent: the result utilities for Figure 7.5.

Runaway Missile
Probabilistic 0.3 0.7

Cost A 0 3
Cost B −7 3
Cost C 7 3

Table 7.3: Coward opponent: the result utilities for figure 7.5.

of decision-theoretic reasoning in our algorithms. And the complexity analy-
sis in earlier sections shows that such reasoning does not necessarily entail
significant computational costs. RESC’s run-time complexity is linear in the
plan-library. UPR’s is polynomial.

103

Chapter 8

Future Directions and Final
Remarks

We summarize the key contributions of this dissertation in Section 8.1. We
discuss future directions for this research in Section 8.2.

8.1 Summary of Key Contributions

In the first part of this dissertation we concentrate on efficient hybrid plan
recognition algorithms. Our contributions in this part of the work are as
follows.

• We presented an efficient symbolic plan recognizer (Chapter 3) that is
capable of handling open challenges in plan recognition. This recognizer
adds significant capabilities to SBR, a previously-published symbolic
plan recognizer [4, 5].

• We presented Utility based Plan Recognition (UPR), a general novel
model of plan-recognition based on influence diagram. UPR allows the
observer to incorporate her own biases and preferences—in the form of
a utility function—into the plan recognition process (Chapter 4). We
presented a hybrid algorithm which sacrifices some UPR expressivity,
but gains much in execution time.

• We presented initial steps towards efficient dynamic tracking of the
organization of multi-agent teams (Chapter 5). This is done by using a

104

8.2 Future Directions

combination of single-agent symbolic plan recognizer, and the DHGM
data-structure, we maintain book-keeping information which allows us
to dynamically track and hypothesize as to the organizational structure
of a group of agents. This allows recognition based on interactions
between agents.

In the second part of the dissertation, we considered the domain of detect-
ing anomalous and suspicious behavior. We use the efficient plan recognition
algorithms described in Part I to create efficient models for anomalous and
suspicious behavior. A summary of this chapter’s contributions are as fol-
lows.

• We present an anomalous behavior recognition model (chapter 6) using
SBR, where the plan library represents normal behavior; any activity
which is not matching the plan library is abnormal. We evaluate its use
in two sets of experiments with trajectories created by machine vision
systems.

• We present a suspicious behavior recognition model (Chapter 7) using
UPR, where the plan library explicitly represents suspicious behavior;
any activity that matches the model will be assumed to be suspicious.
We demonstrate the capabilities of the suspicious behavior recognition
model in three different domains: (a) Recognizing passengers that leave
articles unattended; (b) Catching a dangerous driver that cuts between
two lanes repeatedly; and (c) Air-Combat Environment.

8.2 Future Directions

In the context of plan recognition in multi-agent settings, much remains for
future work. There are various points we would like to investigate further.

Formally define multi-agent plan recognition queries: In our work,
we showed how to detect dynamic splitting and merging of groups with no
reliance on static information on the groups. We did not give formal defin-
itions as to the possible queries answerable by multi-agent plan recognizers
in general, and DHGM in particular.

105

8.2 Future Directions

Apply UPR to multi-agent plan recognition: In our work, we relied
on the symbolic plan recognition model to find groups that execute the same
plan-step. This model does not address uncertainty in plan recognition hy-
potheses, nor incorporating a utility of the observer in the model. Future
work should consider incorporating observer biases in the multi-agent plan
recognition by for example adding costs to DHGM for splitting, etc.

Handle teams that execute different set of actions: The presented
work on multi-agent plan recognition assumes that every member of a group
executes the same or similar actions, as part of their team effort. Therefore,
this approach can not be applied to teams of agents that are cooperating to
achieve a common goal by each executing a different set of actions (such as
a sports team). Future work should consider this issue.

Complete treatment for queue-cutting problem: In this work we in-
troduced the queue cutting problem, where two friends are standing in spe-
cific position in the security line. One of them goes to the restrooms. When
she returns, she joins her friend in the security line, rather than at the end
of the line. Future work should consider providing a clear and complete
treatment of this problem in the context of this model.

106

Bibliography

[1] EC funded CAVIAR project/IST 2001 37540. Found at URL:
http://homepages.inf.ed.ac.uk/rbf/CAVIAR/.

[2] J. A. Adams. Human Management of a Hierarchical System for the Con-
trol of Multiple Mobile Robots. PhD thesis, University of Pennsylvania,
1995.

[3] D. Albrecht, I. Zukerman, and A. Nicholson. Bayesian models for key-
hole plan recognition in adventure game. User Modeling and User-
Adapted Interaction, 8(1–2):5–47, 1997.

[4] D. Avrahami. Symbolic behavior recognition. Master’s thesis, Bar Ilan
University, 2004.

[5] D. Avrahami-Zilberbrand and G. A. Kaminka. Fast and complete sym-
bolic plan recognition. In Proceedings of the International Joint Con-
ference on Artificial Intelligence (IJCAI-05), 2005.

[6] D. Avrahami-Zilberbrand and G. A. Kaminka. Hybrid symbolic-
probabilistic plan recognizer: Initial steps. In Proceedings of the AAAI
Workshop on Modeling Others from Observations (MOO-06), 2006.

[7] D. Avrahami-Zilberbrand and G. A. Kaminka. Incorporating observer
biases in keyhole plan recognition (efficiently!). In Proceedings of
Twenty-Second National Conference on Artificial Intelligence (AAAI-
07), Vancouver, British Columbia, 2007.

[8] D. Avrahami-Zilberbrand and G. A. Kaminka. Towards dynamic track-
ing of multi-agents teams: An initial report. In Proceedings of the AAAI
Workshop on Plan, Activity, and Intent Recognition (PAIR-07), 2007.

107

BIBLIOGRAPHY

[9] D. Avrahami-Zilberbrand and G. A. Kaminka. Utility-based plan recog-
nition: An extended abstract (short paper). In Proceedings of the Sixth
International Joint Conference on Autonomous Agents and Multi-Agent
Systems (AAMAS-07), 2007.

[10] D. Avrahami-Zilberbrand and G. A. Kaminka. Fast symbolic plan recog-
nition. Submitted to Artificial Intelligence (AIJ), 2009.

[11] D. Avrahami-Zilberbrand and G. A. Kaminka. Incorporating observer
biases in keyhole plan recognition (efficiently!). Submitted to Artificial
Intelligence (AIJ), 2009.

[12] D. Avrahami-Zilberbrand, G. A. Kaminka, and H. Zarosim. Fast and
complete plan recognition: Allowing for duration, interleaved execution,
and lossy observations. In Proceedings of the IJCAI Workshop on Mod-
eling Others from Observations (MOO-05), 2005.

[13] M. Bauer. A dempster-shafer approach to modeling agent preferences
for plan recognition. User Modeling and User-Adapted Interaction,
5(4):317–348, 1995.

[14] D. S. Bernstein, E. A. Hansen, and S. Zilberstein. Bounded policy
iteration for decentralized pomdps. In Proceedings of the International
Joint Conference on Artificial Intelligence (IJCAI-05), pages 1287–1292,
2005.

[15] N. Blaylock and J. Allen. Fast hierarchical goal schema recognition.
In Proceedings of the Twenty-First National Conference on Artificial
Intelligence (AAAI-06), pages 796–801, 2006.

[16] X. Boyen and D. Koller. Tractable inference for complex stochastic
processes. In Proc. Fourteenth Annual Conference on Uncertainty in AI
(UAI), pages 33–42, 1998.

[17] M. Brand, N. Oliver, and A. Pentland. Coupled hidden markov models
for complex action recognition. In CVPR ’97: Proceedings of the 1997
Conference on Computer Vision and Pattern Recognition (CVPR ’97),
page 994, Washington, DC, USA, 1997. IEEE Computer Society.

108

BIBLIOGRAPHY

[18] H. Bui. A general model for online probabilistic plan recognition. In Pro-
ceedings of the International Joint Conference on Artificial Intelligence
(IJCAI-03), 2003.

[19] H. Bui, D. Phung, S. Venkatesh, and H. Phan. The hidden permutation
model and location-based activity recognition. In Proceedings of Twenty-
Third National Conference on Artificial Intelligence (AAAI-08), 2008.

[20] H. Bui, S. Venkatesh, and G. West. Policy recognition in the ab-
stract hidden markov models. Journal of Artificial Intelligence Research,
17:451–499, 2002.

[21] S. Carberry. Incorporating default inferences into plan recognition. In
Proceedings of the Eigth National Conference on Artificial Intelligence
(AAAI-90), pages 471–478, 1990.

[22] S. Carrbery. Techniques for plan recognition. User Modeling and User-
Adapted Interaction, 11:31–48, 2001.

[23] E. Charniak and R. P. Goldman. A Bayesian model of plan recognition.
Artificial Intelligence, 64(1):53–79, Nov. 1993.

[24] G. F. Cooper. The computational complexity of probabilistic inference
using bayesian belief networks (research note). Artificial Intelligence,
42(2-3):393–405, 1990.

[25] F. Cupillard, Alberto.Avanzi, F. Bremond, and M. Thonnat. Video
understanding for metro surveillance, 2004.

[26] R. J. Doyle. Determining the loci of anomalies using minimal causal
models. In Proceedings of the International Joint Conference on Ar-
tificial Intelligence (IJCAI-95), pages 1821–1827, Montreal, Quebec,
Canada, 1995.

[27] T. Duong, H. Bui, D. Phung, and S. Venkatesh. Activity recognition
and abnormality detection with the switching hidden semi-markov mod-
els. In IEEE International Conference on Computer Vision and Pattern
Recognition (CVPR-2005), San Diego, CA, June 2005.

[28] T. V. Duong, H. H. Bui, D. Q. Phung, and S. Venkatesh. Activity
recognition and abnormality detection with the switching hidden semi-
markov model. In CVPR (1), pages 838–845, 2005.

109

BIBLIOGRAPHY

[29] S. Fine, Y. Singer, and N. Tishby. The hierarchical hidden markov
model: Analysis and applications. Machine Learning, 32(1):41–62, 1998.

[30] R. J. Firby. An investigation into reactive planning in complex domains.
In Proceedings of the Sixth National Conference on Artificial Intelligence
(AAAI-87), 1987.

[31] C. W. Geib. Assessing the complexity of plan recognition. In Proceedings
of the Nineteenth National Conference on Artificial Intelligence (AAAI-
04), 2004.

[32] C. W. Geib and R. P. Goldman. Plan recognition in intrusion detec-
tion systems. In In DARPA Information Survivability Conference and
Exposition (DISCEX), June 2001.

[33] C. W. Geib and S. A. Harp. Empirical analysis of a probalistic task
tracking algorithm. In AAMAS workshop on Modeling Other agents
from Observations (MOO-04), 2004.

[34] Z. Ghahramani and M. I. Jordan. Factorial hidden Markov models. In
D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, editors, Proc. Conf.
Advances in Neural Information Processing Systems, NIPS, volume 8,
pages 472–478. MIT Press, 1995.

[35] Z. Ghahramani and M. I. Jordan. Factorial hidden Markov models.
Machine Learning, 29:245–275, 1997.

[36] P. J. Gmytrasiewicz and E. Durfee. A rigious operational formalization
of recursive modeling. In IJCAI ’95: Proceedings of the Sixteenth Inter-
national Joint Conference on Artificial Intelligence, pages 492–499, San
Francisco, CA, USA, 1995. Morgan Kaufmann Publishers Inc.

[37] K. Han and M. Veloso. Automated robot behavior recognition applied
to robotic soccer. In Proceedings of the IJCAI-99 Workshop on Team
Behavior and Plan-Recognition, 1999. Also appears in Proceedings of
the 9th International Symposium of Robotics Research (ISSR-99).

[38] B. Hilary and G. Shaogang. Advanced visual surveillance using bayesian
networks. In International Conference on Computer Vision, June 1995.

110

BIBLIOGRAPHY

[39] S. Hongeng, F. Brémond, and R. Nevatia. Bayesian framework for video
surveillance application. In 15th International Conference on Pattern
Recognition (ICPR’00), volume 1, pages 164–170, 2000.

[40] S. Hongeng and R. Nevatia. Multi-agent event recognition. In ICCV,
pages 84–93, 2001.

[41] R. Howard and J. Matheson. Influence diagrams. In R. Howard and
J. Matheson, editors, Readings on the Principles and Applications of
Decision Analysis. Strategic Decisions Group, 1984.

[42] D. H. Hu and Q. Yang. CIGAR: Concurrent and interleaving goal and
activity recognition. In Proceedings of Twenty-Third National Confer-
ence on Artificial Intelligence (AAAI-08), pages 1363–1368, 2008.

[43] M. J. Huber, E. H. Durfee, and M. P. Wellman. The automated mapping
of plans for plan recognition. In AAAI’94: Proceedings of the twelfth
national conference on Artificial intelligence (vol. 2), page 1460, Menlo
Park, CA, USA, 1994. American Association for Artificial Intelligence.

[44] S. S. Intille and A. F. Bobick. A framework for recognizing multi-agent
action from visual evidence. In Proceedings of the Sixteenth National
Conference on Artificial Intelligence (AAAI-99), pages 518–525. AAAI
Press, July 1999.

[45] P. Jarvis, T. Lunt, and K. Myers. Identifying terrorist activity with ai
plan recognition technology. In The Sixteenth Innovative Applications
of Artificial Intelligence Conference (IAAI 04), 2004.

[46] G. A. Kaminka and M. Bowling. Towards robust teams with many
agents. In Proceedings of the First International Joint Conference on
Autonomous Agents and Multi-Agent Systems (AAMAS-02), 2002.

[47] G. A. Kaminka, E. Merdler, and D. Avrahami. Advanced unsupervised
spatial learning algorithm for the avnet37 consortium: Final report (in
hebrew). Technical Report MAVERICK 2006/01, Bar Ilan University,
Computer Science Department, MAVERICK Group, 2006.

[48] G. A. Kaminka, E. Merdler, and D. Avrahami. Advanced unsupervised
spatial learning algorithm for the avnet37 consortium: Interim report (in

111

BIBLIOGRAPHY

hebrew). Technical Report MAVERICK 2006/01, Bar Ilan University,
Computer Science Department, MAVERICK Group, 2006.

[49] G. A. Kaminka, D. V. Pynadath, and M. Tambe. Monitoring teams
by overhearing: A multi-agent plan recognition approach. Journal of
Artificial Intelligence Research, 17:83–135, 2002.

[50] G. A. Kaminka and M. Tambe. Robust multi-agent teams via socially-
attentive monitoring. Journal of Artificial Intelligence Research, 12:105–
147, 2000.

[51] H. A. Kautz and J. F. Allen. Generalized plan recognition. In Proceed-
ings of the Fifth National Conference on Artificial Intelligence (AAAI-
86), pages 32–37. AAAI press, 1986.

[52] U. Kjærulff. A computational scheme for reasoning in dynamic prob-
abilistic networks. In Proceedings of the Conference on Uncertainty in
Artificial Intelligence (UAI-1992), pages 121–129, San Mateo, CA, 1992.
Morgan Kaufmann.

[53] D. Koller and B. Milch. Multi-agent influence diagrams for representing
and solving games. Games and Economic Behavior, 45(1):181–221, 2003.

[54] T. Lane and C. E. Brodley. Temporal sequence learning and data re-
duction for anomaly detection. ACM Transactions on Information and
System Security, 2(3):295–331, Aug 1999.

[55] L. Liao, D. Fox, and H. A. Kautz. Learning and inferring transporta-
tion routines. In Proceedings of the Nineteenth National Conference on
Artificial Intelligence (AAAI-04), pages 348–353, 2004.

[56] D. Mahajan, N. Kwatra, S. Jain, P. Kalra, and S. Banerjee. A framework
for activity recognition and detection of unusual activities. In ICVGIP,
pages 15–21, 2004.

[57] W. Mao and J. Gratch. Decision-theoretic approaches to plan recogni-
tion. In USC/ICT Technical Report, 2004.

[58] W. Mao and J. Gratch. A utility-based approach to intention recogni-
tion. In Proceedings of the AAMAS Workshop on Modeling Other Agents
from Observations (MOO-04), NY City, NY, USA, July 2004.

112

BIBLIOGRAPHY

[59] E. Marhasev, M. Hadad, G. A. Kaminka, and U. Feintuch. The use of
hidden semi-markov models in clinical diagnosis maze tasks. Intelligent
Data Analysis, 13(6):To Appear, 2009.

[60] M. J. Mataric. Interaction and Intelligent Behavior. PhD thesis, Massa-
chusetts Institute of Technology, 1994.

[61] T. M. Mitchell. Machine Learning. McGraw-Hill, 1997.

[62] K. Murphy. Dynamic Bayesian Networks: Representation, Inference
and Learning. PhD thesis, UC Berkeley, 2002.

[63] A. Newell. Unified Theories of Cognition. Harvard University Press,
Cambridge, Massachusetts, 1990.

[64] N. Nguyen, D. Phung, S. Venkatesh, and H. Bui. Learning and detect-
ing activities from movement trajectories using the hierarchical hidden
markov model. In IEEE International Conference on Computer Vision
and Pattern Recognition, 2005.

[65] M. Nicolescu and M. J. Mataric. A hierarchical architecture for behavior-
based robots. In Proceedings of the First International Joint Conference
on Autonomous Agents and Multi-Agent Systems (AAMAS-02), pages
227–233, Bologna, Italy, July 15–19 2002.

[66] W. Niu, J. Long, D. Han, and Y.-F. Wang. Human activity detection
and recognition for video surveillance. In Proceedings of the IEEE Mul-
timedia and Expo Conference, pages 719–722, 2004.

[67] S. Noh and P. Gmytrasiewicz. Flexible multi-agent decision-making
under time pressure. IEEE Transactions on Systems, Man, and Cyber-
netics, Part A: Systems and Humans, 35(5):697–707, 2005.

[68] P. E. of a Vision Based Lane Tracker Designed for Driver Assistance Sys-
tems. Ajoel c. mccall and mohan m. trivedi. IEEE Intellient Vehicles
Symposium, pages 153–158, 2005.

[69] N. Oliver, E. Horvitz, and A. Garg. Layered representations for hu-
man activity recognition. In Fourth IEEE International Conference on
Multimodal Interfaces, 8:831–843, 2002.

113

BIBLIOGRAPHY

[70] D. Q. Phung, T. V. Duong, S. Venkatesh, and H. H. Bui. Topic transition
detection using hierarchical hidden markov and semi-markov models. In
ACM Multimedia, pages 11–20, 2005.

[71] D. V. Pynadath and S. Marsella. Psychsim: Modeling theory of mind
with decision-theoretic agents. In Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI-05), pages 1181–1186, 2005.

[72] D. V. Pynadath and S. Marsella. Minimal mental models. In Proceed-
ings of the Twenty-Second National Conference on Artificial Intelligence
(AAAI-07), pages 1038–1044, 2007.

[73] D. V. Pynadath and M. P. Wellman. Generalized queries on probabilistic
context-free grammars. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 20(1):65–77, 1998.

[74] D. V. Pynadath and M. P. Wellman. Probabilistic state-dependent
grammars for plan recognition. In Proceedings of the 16th Annual Con-
ference on Uncertainty in Artificial Intelligence, pages 507–514, 2000.

[75] L. R. Rabiner. A tutorial on Hidden Markov Models and selected appli-
cations in speech recognition. Proceedings of the IEEE, 77(2):257–286,
Feb. 1989.

[76] B. Rathnasabapathy, P. Doshi, and P. J. Gmytrasiewicz. Exact solutions
of interactive pomdps using behavioral equivalence. In Proceedings of
the Fifth International Joint Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS-06), pages 1025–1032, 2006.

[77] G. Retz-Schmidt. Recognizing intentions, interactions, and causes of
plan failures. User Modeling and User-Adapted Interaction, 2:173–202,
1991.

[78] Q. J. Ross. C4.5 Programs for machine learning. Morgan Kaufmann
Publishers,Inc, 1992.

[79] S. Russel and P. Norvig. Artificial Intelligence, a Modern Approach.
Prentice Hall, 1995.

[80] T. Starner and A. Pentland. Real-time american sign language recog-
nition from video using hidden markov models. In In proceedings of
SCV95, 1995.

114

BIBLIOGRAPHY

[81] G. Sukthankar and K. Sycara. A cost minimization approach to human
behavior recognition. In Proceedings of the Fourth International Joint
Conference on Autonomous Agents and Multi-Agent Systems (AAMAS-
05), 2005.

[82] G. Sukthankar and K. Sycara. Simultaneous team assignment and be-
havior recognition from spatio-temporal agent traces. In Proceedings of
Twenty-First National Conference on Artificial Intelligence (AAAI-06),
July 2006.

[83] D. Suryadi and P. J. Gmytrasiewicz. Learning models of other agents
using influence diagrams. In UM ’99: Proceedings of the seventh in-
ternational conference on User modeling, pages 223–232, Secaucus, NJ,
USA, 1999. Springer-Verlag New York, Inc.

[84] R. Suzic. A generic model of tactical plan recognition for threat ass-
esment. In B. V. Dasarathy, editor, Proceedings of SPIE Multisensor,
volume 5813, pages 105–116, March 2005.

[85] M. Tambe. Tracking dynamic team activity. In Proceedings of the Thir-
teenth National Conference on Artificial Intelligence (AAAI-96), August
1996.

[86] M. Tambe. Towards flexible teamwork. Journal of Artificial Intelligence
Research, 7:83–124, 1997.

[87] M. Tambe and P. S. Rosenbloom. RESC: An approach to agent tracking
in a real-time, dynamic environment. In Proceedings of the International
Joint Conference on Artificial Intelligence (IJCAI-95), August 1995.

[88] D. V. Vail, M. M. Veloso, and J. D. Lafferty. Conditional random fields
for activity recognition. In Proceedings of the Sixth International Joint
Conference on Autonomous Agents and Multi-Agent Systems (AAMAS-
07), pages 1331–1338, 2007.

[89] P. Varakantham, R. T. Maheswaran, and M. Tambe. Exploiting belief
bounds: Practical pomdps for personal assistant agents. In Proceedings
of the Fourth International Joint Conference on Autonomous Agents
and Multi-Agent Systems (AAMAS-05), pages 978–985, 2005.

[90] Wikipedia.

115

BIBLIOGRAPHY

[91] G. Wu, Y. Wu, L. Jiao, Y.-F. Wang, and E. Y. Chang. Multi-camera
spatio-temporal fusion and biased sequence-data learning for security
surveillance. In MULTIMEDIA ’03: Proceedings of the eleventh ACM
international conference on Multimedia, pages 528–538, New York, NY,
USA, 2003. ACM Press.

[92] T. Xiang and S. Gong. On the structure of dynamic bayesian networks
for complex scene modelling. In Joint IEEE International Workshop on
Visual Surveillance and Performance Evaluation of Tracking and Sur-
veillance, October 2003.

[93] T. Xiang and S. Gong. Video behavior profiling for anomaly detec-
tion. IEEE Transactions on Pattern Analysis and Machine Intelligence,
30(5):893–908, 2008.

[94] J. Yamato, J. Ohya, and K. Ishii. Recognizing human action in time-
sequential images using hidden markov model. In In Proceedings of
IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR-92), pages 379–385, 1992.

[95] J. Yin, Q. Yang, and J. J. Pan. Sensor-based abnormal human-activity
detection. IEEE Transactions on Knowledge and Data Engineering,
20(8):1082–1090, 2008.

116

