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Abstract

Multi-robot systems researchers have been investigating adaptive coordination

methods for improving spatial coordination in teams. Such methods utilize learn-

ing to improve selection of the coordination method, given the dynamic changes

in density of the robots. Unfortunately, while their empirical success is evident,

none of these methods has been understood in the context of existing formal work

on multi-robot learning. This paper presents a reinforcement-learning approach

to coordination algorithm selection, which is not only shown to work well in ex-

periments, but is also analytically grounded. We present a reward function (Ef-

fectiveness Index, EI), that reduces time and resources spent coordinating, and

maximizes the time between conflicts that require coordination. It does this by

measuringthe resource-spending velocity. We empirically show its successful

use in stateless reinforcement learning, in several domains, including robots in

virtual worlds, simulated robots, and physical AIBO robots executing foraging.

In addition, we analytically explore the reasons that EI works well. We show that

under some assumptions, spatial coordination opportunities can be modeled as

matrix games in which the payoffs to the robots are unknown, but are directly a

function of EI estimates. The use of reinforcement learningleads to robots max-

imizing their EI rewards in equilibrium. We then apply the EIreward function

in full multi-state reinforcement learning, and demonstrate that it can be used in

settings requiring tight coordination between the robots.This work is a step to-

wards bridging the gap between the theoretical study of interactions, and their use

in multi-robot coordination.
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Chapter 1

Introduction

Multi-robot systems researchers have been investigating communication-less co-

ordination methods for improving spatial coordination in teams [14, 35, 34, 15].

Such methods attempt to resolve spatial conflicts between team-members, e.g.,

by dynamic setting of right-of-way priorities [39, 43], constrained avoidance of

conflict areas [6], territorial separation [36, 12, 21], or role-based priorities [29].

It is accepted that no one method is always best [13, 11, 34]; rather, the best

method depends on the density of the robots and other dynamically-changing set-

tings [34]. All methods reach a point where adding robots to the group (i.e.,

increasing the density of the robots in space) reduces overall (not just marginal)

productivity [36, 35]. However, this point differs betweenmethods [34, 11], and

between application contexts. Some approaches to this challenge include use of

communications, and methods utilizing additional sensed information (e.g., the

position of others around the robot).

A different promising approach to this challenge utilizes algorithm selection

methods to dynamically select the best non-communicating coordination method,

given the changing settings of the robots. For instance, Toledo and Jennings [11]

propose a method based on reinforcement learning, where fixed coordination

methods are switched to accommodate dynamic changes to the environment.

More recently, Rosenfeld et al. [34] advocated allowing eachrobot to individ-

ually switch coordination methods to reduce its own estimated resource costs.

They have shown that this results in combinations of heterogeneous coordination
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methods, that are significantly better than any single method selected uniformly.

In general, all of these adaptive coordination methods havedemonstrated much

success in multiple domains of interest.

This thesis makes several distinct contributions. First, it presents a novel

reward function, calledEffectiveness Index(EI), which is used in a stateless

reinforcement-learning approach to coordination algorithm selection in multi-

robot tasks. The key idea in EI is to reduce time and resourcesspent coordi-

nating, and maximize the time between conflicts that requirecoordination. It does

this by measuringthe resource-spending velocity(the resource "burn rate"). The

use of reinforcement learning minimizes this velocity. Onenice feature of EI is

that it does not require any knowledge of the task involved, and is thus domain-

independent. We empirically show that EI succeeds in improving multi-robot

coordination in several domains, including robots in virtual worlds, simulated

robots, and physical AIBO robots executing foraging. In particular, use of EI

is shown to improve on results from previous techniques.

As an additional contribution, we analytically explore thereasons and as-

sumptions underlying the success of EI. We formalize the experiment domains

as extensive-form games. We show that under some assumptions, these games

can be modeled as matrix games in which the payoffs to the robots are unknown,

but are directly a function of EI estimates. The use of reinforcement learning

leads to robots maximizing their EI rewards in equilibrium.We believe that this

work represents an important step towards bridging the gap between the theoret-

ical study of interactions (via game theory), and their use to explain and inform

multi-robot coordination.

Finally, we explore the use of EI in more complex settings. First, we show

that EI can be used in a state-based policy with the familiar Q-Learning algorithm.

We demonstrate its use in highly-constrained settings, where the coordination be-

tween agents is critical to the success of the team as a whole.In these settings,

the use of EI in multi-state policies is shown to be superior to its use in a stateless

method discussed earlier in the thesis, for foraging. Second, we show that EI can

be used to indirectly learn the appropriate conditions for its own use, e.g., the con-

ditions under-which a conflict is declared (which allows a coordination method to

be selected). This overcomes the need for separate learningof the conditions
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under-which EI is to be used. Third, we apply EI in a commercial virtual environ-

ment, where synthetic agents learn to select different routes to a target location,

so as to minimize arrival times. The surprising result of this application is that EI-

based learning works well, even though the coordination method is fixed, and it is

the route travel durations that are being learned (i.e., a task-oriented selection).

This thesis is organized as follows. Chapter 2 discusses background and re-

lated work. Chapter 3 introduces the Effectiveness Index (EI) measure and rele-

vant notation. Chapter 4 discusses the use of EI in stateless reinforcement learn-

ing. This chapter leaves two immediate challenges open, which we cover in other

chapters: (i) A theoretical explanation as to why statelessEI work in multi-agent

reinforcement learning (Chapter 5); and (ii) How can EI be used in more complex

settings, involving multiple states and parametrized conditions on its use (Chap-

ter 6). Finally, Chapter 7 concludes and presents directionsfor future work.
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Chapter 2

Background and Related Work

Our work is related to several lines of investigations in multi-agent and multi-robot

systems research. Some of our work in this thesis is evaluated and contrasted with

other work onmulti-robot foraging, a standard multi-robot coordination problem,

discussed in Section 2.1. However, we generalize our results beyond foraging,

and indeed show that it fits into the area of multi-agent reinforcement learning

and game-theory (Section 2.2).

2.1 Multi-Robot Coordination and Foraging

Foraging is a canonical task in multi-robot systems, where multiple robots are all

situated within a common work-area. Their task is to pick up small objects (pucks)

spread through the work area, and bring them to a goal location (typically at the

center of the work area). They continue in the process of searching for pucks,

and bringing them to the goal location, until time runs out; the number of pucks

is typically not known in advance. Scoring is team-based: Robots are evaluated

based on the total number of pucks which have been successfully brought to the

goal location. In most variants of multi-robot foraging, robots are not allowed to

explicitly communicate with each other.

Many investigations have utilized multi-robot foraging asa test problem with

which to evaluate coordination methods that do not utilize communications; when

communication possible, other methods apply (see, e.g., [33]. Communication-
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less coordination is inherent to multi-robot foraging, as robots tend to collide with

others when leaving and entering the goal area, and when searching through the

environment [35, 36]. Indeed, a number of non-adaptive coordination methods

have been published and demonstrated in multi-robot foraging; a few of these are

used extensively in this thesis.

The noisemethod is described by Balch and Arkin in [6]. When using this

method, a virtual repulsion force is projected into the movements of a robot when

it is about to collide, to make it change its heading. Some noise is injected as well,

to prevent being stuck in a local minimum. Theaggressionmethod was proposed

by Vaughan et al. [39]. It works by having robots who are aboutto collide stop

in their tracks, and randomly pick either "meek" or "aggressive" behaviors. These

would cause the robots to back away (meek) for a period of timeor attempt to

move forward ("aggressive"). As this is done with every actioncycle, the proba-

bility of actual collision is very low. Finally, the therepelmethod causes colliding

robots to back away for a given amount of time, essentially reversing their course

for the period. Repel is essentially an enforced "meek" behavior selection for all

robots; it is described in [34].

It has been repeatedly shown that no one coordination methodis best for for-

aging [35, 36], or indeed for other tasks requiring coordination [13]; rather, the ef-

fectiveness of the method is dependent on group size. However, different methods

stop being effective with different group sizes [34, 11]. Thus several researchers

have described ways of adapting the coordination method to the group size.

Fontan and Matarić [36, 12] have proposed a method of coordination that at-

tempts to prevent collisions from taking place, by allocating robots to different

regions. Abucket brigadealgorithm is used to transfer pucks from one region to

the next, until the puck is delivered to the goal region. The allocation of robots to

regions is adaptive, in the sense of taking the number of robots into account. To

maintain coordination, the robots require knowing of the liveness of other robots,

in contrast to our work. Similar ideas of territorial division have been developed

for other tasks, such as area patrolling [10, 3], and coverage [21, 16, 20]. Later

work in foraging, by Ostergaard et al. [29], has examined ways of adapting the

bucket-brigade to the number of robots possible, without explicit knowledge of the

liveness of robots. They thus adapt a particular coordination method to the scale
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of the team. In contrast, our work has tackled both adapting aspecific method, as

well as choosing between methods.

A different approach, closely related to ours, is based on coordination algo-

rithm selection. Rosenfeld et al. [34, 32] presented a methodthat adapts the

selection of coordination methods by multi-robot teams, tothe dynamic settings

in which team-members find themselves. The method relies on measuring the

resources expended on coordination, using a measure calledCombined Coordina-

tion Cost (CCC); however, it ignores the gains accumulated from long periods of

no coordination needs, in contrast to our work. Similarly toour work, the adapta-

tion is stateless, i.e., has no mapping from world state to actions/methods. Instead,

the CCC is estimated at any given point, and once it passes pre-learned (learned

offline) thresholds, it causes dynamic re-selection of the coordination methods by

each individual robot, attempting to minimize the CCC. In contrast, all our learn-

ing and adaption is done on-line.

Interference [15, 14] is a closely related measure to CCC, and can be seen as

a special case of it: It measures the amount of time spent on coordination, but not

other resource usage costs (as in CCC) or frequency of the need tocoordinate (as

in our work). Goldberg and Matarić [15] use it to evaluate and compare different

organizational solutions for foraging, i.e., different task-execution methods: In

the first, all robots are homogeneous, and play the same role (this is the same

organization we evaluate in this thesis, and also studied byRosenfeld et al. [34]);

in the second, robots are divided into different behavioralgroups ("castes"), where

the behavior of robots are decided by the group they belong to(similar in principle

to [36]); in the final organizational solution, all robots are identical, but explicitly

cooperate with each other by stopping their motions whenever one of them picks a

puck. Goldberg and Matarić have shown that the first method is superior to others,

and has the smallest interference value. In contrast, we focus on only one task-

execution method (corresponding to the first, winning, solution they present), and

study the use of alternative coordination methods within it.

Following up on earlier work on the aggression method [39], Zuluaga and

Vaughan [43] have shown that choosing aggression level proportional to the

robot’s task investment can produce better overall system performance compared

to aggression chosen at random. Thus biasing the random selection of the "ag-
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gressive" behavior to the effort already spent on bringing the puck home improves

overall performance. This result is compatible with our findings. However, our

work on Effectiveness Index relies solely on task-independent resource measure-

ment.

2.2 Multi-Agent Reinforcement Learning

Since Sutton and Barto’s introduction of reinforcement learning (RL) [37], there

have been, of course, numerous investigations of reinforcement learning in a wide

variety of settings and forms. A majority of these has focused on single-robot

learning, which is beyond the scope of this paper. In general, RL is used to learn

a policy, i.e., a mapping between states and actions to take when the robot is in

these states. This is done by relying on a reward function, which is given to the

RL algorithm.

Most investigations of reinforcement learning in multi-robot settings have

focused on improving the learning mechanisms (e.g., modifying the basic Q-

learning algorithm), and utilized task-specific reward functions. We briefly dis-

cuss these below. Two recent surveys are provided in [42, 17].

Mataríc [28] discusses three techniques for using rewards in multi-robot Q-

learning: A local performance-based reward (each robot receiving reward for its

own performance, and per its own goals), a global performance-based reward (all

robots receive reward based on achievement of team goals), and a heuristic strat-

egy referred to as shaped reinforcement. Shaped reinforcement, which was de-

veloped by Mataric, provides a heuristic function that combines rewards based on

local rewards, global rewards and coordination interference of the robots. Balch

[7] reports on using reinforcement learning in individual robot behavior selec-

tion. His work uses a two-layer architecture: The lowest layer is a reactive motor

schema (similar to the potential fields), which implement atomic behaviors. The

selection of schemas is made at the upper level, using a Q-Learning mechanism.

The rewards for the selection were carefully selected for each domain and ap-

plication, in contrast to our work. Indeed, in other work, Balch [4] discusses

considerations for task-dependent reward functions for reinforcement learning in

multi-robot settings. Balch shows that the choice of reward function influences
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the behavioral diversity, and group performance in a variety of tasks, including

foraging and soccer.

Kok and Vlassis [24] discuss a technique for propagating rewards among co-

operative robots, based on the structure of the dependence between the robots.

However, they too assume that the reward function is given aspart of the task.

In contrast to Balch’s [7], and Kok and Vlassis’s [24] work, weexplore a

domain-independent reward function, based on minimizing resource use, and use

them in selecting between coordination methods, rather than task behaviors.

Maes and Brooks[26] describe an algorithm which allows a behavior-based

single robot to learn to move by a correct coordination of behaviors that con-

trol each of the robot’s six legs. This learning is based on the perception of a

positive and a negative feedback and according to the philosophy that the archi-

tecture is fully distributed. Each behavior in all six legs searches for correlation

between action and positive feedback (i.e. appropriate action) and tries to under-

stand what conditions are robust enough for the action (i.e.maximize probability

of a positive feedback and minimize probability of negative). Although this work

demonstrate significant results in coordinated behaviors,the algorithm relies on

essentially instantaneous communications between the behaviors, for their coordi-

nation (and feedback). However, when in multi-robot settings, one cannot assume

perfect, instantaneous communications. Our proposed workcomplements Maes

and Brooks’ work: While they focus on distributed reinforcement learning based

on a given set of rewards, we focus on general reward functions that may be useful

for re-reinforcement learning.

An interesting technique, Learning Momentum (LM), was demonstrated by

Clark, Arkin and Rome [30] for a single robot, and extended for multi-robots by

Lee and Arkin [25]. The main idea of LM is behavior’s weight’smodification.

Weights are adjusted by a gradient descent method during thelearning process

and then the behavior manager is fusing behaviors accordingly to them. All of the

behaviors, which LM is working with, have different goals, and thus the technique

learns to select between competing goals. This is the main difference from our

approach, which is intended for selecting one best behaviorfrom a set of different

behaviors with a same goal.

Excelente-Toledo and Jennings [11] propose a mechanism forselecting be-
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tween coordination methods, based on their effectiveness and importance. They

define a number of general characteristics of coordination methods, including the

conditions (and cost for achieving them) for the application of each method, the

cost of the algorithm, and their likelihood of success. Eachof these characteris-

tics manually receives a qualitative grade (high, medium, low), during an offline

evaluation period. During run-time, the cost of each coordination method (with

the additional cost of achieving its application conditions), and the likelihood of

success are used as the basis for selection. Similarly to this work, we utilize the

concepts of method costs and success, though the process is automated, and mea-

sures these factors quantitativelyon-line. Reinforcement learning is used as the

basis for coordination method selection.

Hogg and Jennings [18] examine economic strategies balancing individual and

cooperative goals. They utilize models of the other robots and methods of coordi-

nation to adjust the sociability of an robot. They utilize one-stage Q-learning for

learning models of other robots, to improve predictions of coordination results. In

contrast, we present a reward function that can be utilized to learn to individually

select between coordination methods, without modeling theother robots.

Kapetanakis and Kudenko [22] present the FMQ learning algorithm. This

algorithm is intended for coordination learning in one-stage MDP games. FMQ is

a modified regular Q-Learning method for one-stage games andthis modification

is based on the Boltzmann strategy. They then examine how an robot that uses

FMQ learning technique may influence other robot’s effectiveness of learning,

when the latter uses a simple Q-learning algorithm [23]. This method does not

use communication or monitoring of the other robots’ actions, but is based on

the assumption that all of the robots are getting the same rewards. The reward

functions are assumed to be given. In contrast, we focus on the reward functions

to be used, rather than the learning algorithm.

Wolpert et al. [41, 40] developed the COIN reinforcement-learning frame-

work. Each agent’s reward function is based onwonderful life utility, the differ-

ence between the group utility with the agent, and without it. Similarly to Wolpert

et al., our study focuses on the reward function, rather thanthe learning algo-

rithm; and similarly, we focus on functions that arealigned with global group

utility. However, our work differs in several ways. First, we distinguish utility
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due to coordination, from utility due to task execution. Second, our reward func-

tion involves also the time spent coordinating and time spent executing the task.

Finally, we contribute in this paper a game-theoretic perspective on multi-robot

tasks.

Tumer [38] continued developing the concept of aligned reward functions, and

discusses methodology for defining reward functions for reinforcement learning

in multi-robot settings. The properties necessarily for these functions require in-

dependence of individual rewards, and alignment with the global utility of the

group. Tumer presents two individual reward functions thatare consistent with

these requirements. utility functions presented in the paper. Both of them contain

part of global utility, and thus require full observation orcommunications with

other robots, in contrast to our work.

Agogino and Tumer [1, 2] construct fitness functions for evolutionary adapta-

tion of a multi-component (e.g., multi-robot) system. Thisapproach emphasizes

(i) the need for correlation (alignment) between individual fitness of agent and the

general fitness function of the entire system success; as well as (ii) independence

of the individual functions of the actions of other agents (which affects the speed

of adaptation). Agogino and Tumer provide several domain-dependent functions

for the solution of a specific problem (searching for Points Of Interest). Our work

differs in several points: First, we did not apply our EI calculations to evolutionary

learning (adaptation); second, we distinguish the task-oriented and coordination

components of the global function.
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Chapter 3

Effectiveness Index (EI)

We first cast the problem of selecting coordination algorithms as a reinforcement

learning problem (Section 3.1). We then introduce the effective index (EI) reward

function in Section 3.2.

3.1 Coordination Algorithm Selection

Coordination prevents and resolves conflicts among robots ina multi-robot sys-

tem. Such conflicts can emerge as results for shared resource(e.g., space), or

as a result of violation of joint decisions by team-members.Many coordina-

tion algorithms (protocols) have been proposed and explored by MRS researchers

[12, 29, 36, 39]. Not one method is good for all cases and groupsizes [34].

However, deciding on a coordination method for use is not a trivial task, as the

effectiveness of coordination methods in a given context isnot known in advance.

We focus here on loosely-coupled application scenarios where coordination is

triggered by conflict situations, identified through some mechanism (we assume

that such a mechanism exists, though it may differ between domains; most re-

searchers simply use a pending collision as a trigger). Thusthe normal routine

of a robot’s operation is to carry out its primary task, untilit is interrupted by

an occurring or potentially-occurring conflict with another robot, which must be

resolved by a coordination algorithm. Each such interruption is calleda conflict

event. The event triggers a coordination algorithm to handle the conflict. Once
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it successfully finishes, the robots involved go back to their primary task. Such

multi-robot scenarios include foraging, search and exploration, and deliveries.

Let A = {a1 . . . , ai, . . . , aN}, 1 ≤ i ≤ N be a group ofN robots, cooperating

on a group task that started at time0 (arbitrarily) lasts up-to timeT (A starts

working and stops working on the task together). We denote byTi = {ci,j}, 0 ≤

j ≤ Ki the set of conflict events for roboti, whereci,j marks the time of the

beginning of each conflict.

The time between the beginning of a conflict eventj, and up until the next

event, the intervalIi,j = [ci,j, ci,j+1), can be broken into two conceptual periods:

The active interval Ia
i,j = [ci,j, ti,j) (for someci,j < ti,j < ci,j+1) in which the

robot was actively investing resources in coordination, and thepassiveinterval

I
p
i,j = [ti,j, ci,j+1) in which the robot no longer requires investing in coordination;

from its perspective the conflict event has been successfully handled, and it is back

to carrying out its task. By definitionIi,j = Ia
i,j + I

p
i,j. We define thetotal active

timeasIa =
∑

i

∑
j Ia

i,j and thetotal passive timeasIp =
∑

i

∑
j I

p
i,j.

Our research focuses on a case where the robot has a nonempty setM of coor-

dination algorithms to select from. The choice of a specific coordination method

α ∈ M for a given conflict eventci,j may effect the active and passive intervals

Ia
i,j, I

p
i,j (and possibly, other conflicts; see next section). To denotethis depen-

dency we useIa
i,j(α),Ip

i,j(α) as active and passive intervals (respectively), due to

using coordination methodα. Figure 3.1 illustrates this notation.

Figure 3.1: Illustration of task time-line, from the robots’ perspective. Task exe-
cution is occasionally interrupted by the requirement to spend resources on coor-
dination.

We define the problem of coordination algorithm selection interms of rein-

forcement learning. We assume each robot tries to maximize its own reward by

selecting a coordination methodα.
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3.2 Effectiveness Index

We call the proposed general reward for coordinationEffectiveness Index(EI). Its

domain independence is based on its using three intrinsic (rather than extrinsic)

factors in its computation; these factors depend only on internal computation or

measurement, rather than environment responses.

3.2.1 The cost of coordinating.The first factor we consider is the cost of internal

resources (other than time) used by the chosen method. This is especially impor-

tant in physical robots, where battery life and power are a concern. We argue that

such internal estimate of resource usage is practical:

• First, some resource usage is directly measurable. For instance, energy con-

sumption during coordinated movement (e.g., when getting out of a possible

collision) or communications (when communicating to avoida collision) is

directly measurable in robots, by accessing the battery device before and

after using the coordination algorithm.

• Second, resource usage may sometimes be analytically computed. For in-

stance, given a the basic resource cost of a unit of transmission, the cost of

using a specific protocol may be analytically computed (as itis tied directly

to its communication complexity in bits).

We denote byCC
i the total cost of coordination, of roboti. It can be broken

into the costs spent on resolving all conflictsCC
i =

∑
j CC

i,j. CC
i,j is similar to

other measures suggested previously, but excludes the costof time and resources

spent before the conflict (unlike [34]), and is limited to only considering individual

intrinsic resources (unlike [43]).

Let us usecosti(α, t) to denote the costs due to using coordination method

α ∈ M at any timet, by roboti, during the lifetime of the task.costi(α, t) is a

function mapping the selection of a coordination methodα at timet to the cost

of applying it, in terms of resources available to the robot.We expect this cost

to vary with the chosen methodα (as different methods have different costs of

application), and with time (as applying the method at a timewhen robots are

about to collide is different from applying it when the robots are far apart). The
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function is not necessarily known to us a-priori (and indeed, in this research, is

not).

Using the functioncosti(α, t) we define theCC
i,j of a particular event of robot

i at timeci,j:

CC
i,j(α) =

∫ ti,j

ci,j
costi(α, t) dt +

∫ ci,j+1

ti,j
costi(α, t) dt

=
∫ ti,j

ci,j
costi(α, t) dt

(3.1)

CC
i,j is defined as the cost of applying the coordination algorithmduring the active

interval [ci,j, ti,j) and the passive interval[ti,j, ci,j+1). However, the coordination

costs during the passive interval are zero by definition.

3.2.2 The time spent coordinating.The main goal of a coordination algorithm is

to reach a (joint) decision that allows all involved robots to continue their primary

activity. Therefore, the sooner the robot returns to its main task, the less time

is spent on coordination, and likely, the robot can finish itstask more quickly.

Thus, smallerIa
i is better. Note that this is true regardless of the use of other

resources (which are measured byCC
i ). Even if somehow other resources were

free, effective coordination would minimize conflict-resolution time.

We thus define theActive Coordination Cost(ACC) function for roboti and

methodα at timeci,j, that considers theactive timein the calculation of coordina-

tion resources cost:

ACCi,j(α) ≡ Ia
i,j(α) + CC

i,j(α) (3.2)

3.2.3 The frequency of coordinating. If there are frequent interruptions to the

robot’s task in order to coordinate, even if short-lived andinexpensive, this would

delay the robot. We assume (and the results show) that good coordination deci-

sions lead to long durations of non-interrupted work by the robot. Therefore, the

frequency of coordination method’s use is not less important than the time spent

on conflict resolving. Thus, largerIp
i,j is better.

We thus want to balance the total active coordination costACCi =
∑

j ACCi,j against the frequency of coordination. We want to balance short-lived,

infrequent calls to an expensive coordination method against somewhat more fre-

quent calls to a cheaper coordination method.
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We therefore define the Effectiveness Index of roboti, of conflict j, due to

using coordination methodα ∈M as follows:

EIi,j(α) ≡
ACCi,j(α)

Ia
i,j(α) + I

p
i,j(α)

=
Ia
i,j(α) + CC

i,j(α)

Ia
i,j(α) + I

p
i,j(α)

(3.3)

That is, the effectiveness index (EI) of a coordination method α during this

event is the velocity by which it spends resources during itsexecution, amortized

by how long a period in which no conflict occurs. Since greaterEI signifies greater

costs, we typically put a negation sign in front of the EI, to signify that greater

velocity is worse; we seek to minimize resource spending velocity.
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Chapter 4

Stateless Reinforcement Learning

Using EI

We now turn to evaluate the use of EI in reinforcement learning settings. This

chapter introduces the use of EI in stateless reinforcementlearning, where there

EI is used as the basis for the reward associated with selecting a coordination

method. The stateless reinforcement learning algorithm isintroduced in Section

4.1. We then turn to survey experiment results in multiple domains, supporting

the use of stateless EI in multi-robot team tasks.

In Sections 4.2 and 4.3, we use EI in a canonical multi-robot systems task,

called foraging. We show that the use of EI leads to improved performance in two

independent foraging settings, in simulation (Section 4.2) and with real robots

(Section 4.3). We then explore the use of EI in settings somewhat different than

previously described. In Section 6.3 presents the use of EI in settings where coor-

dination is implicit in the selection of domain actions, rather than explicit coordi-

nation methods.

4.1 EI in stateless Q-Learning

In this paper we use the simple single-state Q-learning algorithm (Algorithm 4.1)

to estimate the EI values from the robot’s individual perspective. The termstate-

lessapplies here, as environment or robot states in which coordination methods
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are selected are not distinguished. In other words, there isno distinction between

the different states a robot might be in when selecting a specific coordination

methodα. Rather, the reward (−EI) collected for usingα is associated with it no

matter where and when it was selected.

The learning algorithm we use is based on the following Q-Learning equation:

Qt(a) = Qt−1(a) + ρ(Rt(a)− γQt−1(a))

whereρ is the learning speed factor, andγ is a factor of discounting. The al-

gorithm uses a constant exploration rateβ, for simplicity; there are of course

complex—and more sophisticated—methods of changing the exploration rate dy-

namically, but they are not our focus in this paper. While single agent Q-learning

is known to face difficulties in some multi-robot settings [8, 42, 17], we show ex-

perimentally that even this simple algorithm can convergesto a useful result. We

discuss its successes and failures extensively in the next sections. Chapter 5 ex-

plores the success of the learning mechanism in much greaterdetail. In Algorithm

4.1 below, we use the following variables.

• Q[α] is a table with the learned EI for all coordination methodsα ∈M .

• SolvingT ime is the time when the conflict ends (ti,j).

• BgnCycleT ime is the time when the conflict is started (ci,j).

• EndCycleT ime is the time when the previous conflict cycle ends (ci,j−1).

• Cost is a cost spent resolving the conflict (ACCi,j).

• Counter keeps track of conflicts (j).

4.2 Foraging in TeamBots Simulation

As previously described in Chapter 2, foraging is a canonicaltask in multi-robot

systems research, and has been studied extensively. In thistask robots locate tar-

get items (pucks) within a defined work area, and deliver themto a goal region.
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Algorithm 1 Single-State EI-Based Adaptation
Require: β ∈ [0, 1] – rate of exploration vs exploitation
Require: ρ ∈ [0, 1] – learning speed factor
Require: γ ∈ [0, 1] – learning discount factor
Require: M – a set of coordination algorithms
Require: A way of measuring accumulating coordination resource costs
Require: A way of checking current time or step number in case of discrete sys-

tem.
1: Count← 0
2: for all α ∈M do
3: Q[α]← random([0, 1])
4: while robot is activedo
5: WAIT FOR CONFLICT EVENT
6: Count← Count + 1
7: EndCycleT ime← CurrentTime()
8: if Count > 1 {Not First Conflict} then
9: ta ← SolvingT ime−BgnCycleT ime

10: tp ← EndCycleT ime− SolvingT ime

11: EI ← − ta+Cost
ta+tp

12: α← SelectedMethod

13: Q[α]← Q[α] + ρ · (EI − γ ·Q[α])
14: BgnCycleT ime← EndCycleT ime

15: if β > random([0, 1]) then
16: SelectedMethod← random(M)
17: else
18: SelectedMethod← argmaxα∈MQ[α]
19: EXECUTESelectedMethod {Record resource spending toCost}
20: SolvingT ime← CurrentTime()
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Because there is typically a single goal region, and the pucksare spread through-

out the work area, the goal area becomes congested as robots move in and out of it

as they bring in new pucks, and leave to collect new ones, respectively. A number

of coordination methods have been explored for foraging (see Chapter 2). Here

we utilize only on a subset of methods as the basis for the use of EI.

We follow Rosenfeld et al.’s work [34]. We used the TeamBots simulator [5]

to run experiments. Teambots simulated the activity of groups of Nomad N150

robots in a foraging area that measured approximately 5 by 5 meters. We used

a total of 40 target pucks, 20 of which were stationary withinthe search area,

and 20 moved randomly. For each group, we measured how many pucks were

delivered to the goal region by groups of 3,5,15,25,35,39 robots within 10 and 20

minutes. We averaged the results of 16–30 trials in each group-size configuration

with the robots being placed at random initial positions foreach run. Thus, each

experiment simulated for each method a total of about 100 trials of 10 and 20

minute intervals; this was done to evaluate the effect of training time on the use of

the EI method.

We compare the EI method with three types of coordination methods described

also in [34]: Noise(which essentially allows the robots to collide, but increases

their motion uncertainty to try to escape collisions),Aggression[39], andRepel,

in which robots move away (variable distance) to avoid an impending collision.

We compare all of these to random coordination algorithm selection (RND), and

to the method of Rosenfeld et al. (ACIM) [34].

We present the results of various configurations below, in Figures 4.1–4.12.

In all, unless otherwise marked, the X axis marks the group size, and the Y axis

marks the number of pucks collected.

Figure 4.1 shows that given no resource limitations, the EI method is as good

as ACIM (and Repel) which provides the best results, though it has not used prior

off-line learning. All methods were run for 20 minutes. Resources were not lim-

ited, and had no cost.

Figures 4.2–4.4 show the advantage of EI over ACIM when resource costs

apply. Here, motion costs a unit of simulated fuel for each simulation tick. There

is a total of only 500 units of fuel available for 20 simulation minutes; robots stop

moving ("die") as their fuel runs out.
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Figure 4.1: Simulated foraging:T = 20, no resource limits.

First, we contrast ACIM, RND, and EI under these severe constraints. The

line markedACIM(t:1,f:0) marks the performance of the ACIM when it was not

trained off-line with these costs in effect, but rather assumed that fuel is free (i.e.,

as in the previous set of results). TheACIM(t:.7,f:.3) line shows the performance

of ACIM when the CCC method assigns a non-negative weight to the cost of fuel.

The linesEI(no fuel)andEI(with fuel)show the analogical performance of the EI

methods when the fuel is not taken into account, or is taken into account. The

performance of random coordination method selection is presented, to serve as

a baseline. The figure shows that when ACIM takes fuel costs into account, it

performs well. But when it does not, its performance is very low; indeed, it is

lower than random. On the other hand, EI always performed well, with explicit

knowledge of fuel costs or without.

Let us consider these results in finer-grain resolution. Figure 4.3 contrasts

the performance of EI and RND, with the coordination methods they select from.

The figure clearly shows the superior performance of EI with and without a-priori

knowledge of fuel-constraints.

Figure 4.4 provides an additional perspective on the same situation. The figure
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Figure 4.2: Simulated foraging: ACIM and EI,T = 20, fuel is limited to 500
units.

Figure 4.3: Simulated foraging: EI, RND and the base methods,T = 20, fuel is
limited to 500 units.
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shows the number of robots that remain active when time ran out. The two EI

methods are the only ones that consistently leave all robotsactive as time runs

out.

Figure 4.4: Simulated foraging: Number of inactive (dead) robots atT = 20,
when fuel is limited to 500 units.

Figure 4.5 demonstrates that our use of EI is not limited to selecting between

the specific methods described above. Here, we utilized it toselected between

multiple variants of the repel method. Repel has a parameter which controls

the distance (given in robot radii) to which robots backtrack before attempting

to move to their goal location. We use EI to select between these variants.

One weakness of the method we propose is that it relies on an on-line training

period, unlike Rosenfeld et al’s ACIM method (which trains offline). Indeed,

when we reduce the training period from 20 minutes to 10 minutes, the relative

effectiveness of EI (compared to ACIM) is greatly reduced. Figures 4.6 and 4.7

show the effect of this reduction in training time, when fuelis unlimited, and when

it is limited (respectively).

Given sufficient training time, the fact that EI adapts completely on-line gives

it a significant advantage over offline learning methods, such as ACIM. In a final

set of experiments, we evaluated the use of EI (contrasting with ACIM) when

there is limited fuel, and the coordination methods are "leaky", i.e., they spend
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Figure 4.5: Simulated foraging:T = 20, Repel at distance of 2,3,5,7 and 10 robot
radii. Fuel is unlimited.

Figure 4.6: Simulated foraging:T = 10, Fuel is unlimited.
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Figure 4.7: Simulated foraging:T = 10, Fuel is limited to 500 cycles.

more fuel then they report to the method selection process.

Figures 4.8–4.10 show how ACIM and EI respond to unknown costs. In these

figures, we show a comparison between ACIM and EI adaptation, where one of

the base coordination methods (aggression, noise, repel, respectively) are "leaking

fuel", i.e., they spend some fraction of a fuel unit more than advertised, withevery

cycleof operation. In all of these, the EI methods outperforms ACIMin almost all

settings in group sizes, demonstrating its efficacy over theoff-line-based method.

Figure 4.11 summarizes these findings. Here, both EI and ACIM take fuel

costs into account, but the actual fuel costs are greater. EIprovides significantly

better performance in these settings (1-tailed t-test,p = 0.0027).

These results are further strengthened by examining the standard deviation of

the number of collected pucks when using "leaky" methods. Figure 4.12 shows

the average standard deviation of collected pucks, when thecoordination method

is spending 0.2, 0.5, and 1 fuel units more than it reports, per cycle. The X axis

measures the group size. The Y axis measures the average standard deviation

across the three conditions. The three sub-figures show the results separately for

leaky aggression, noise, and repel. Each sub-figure contrasts ACIM and EI.

A lower standard deviation indicates reduced sensitivity to misreporting of

the coordination methods on their resource spending, and shows that in fact the
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(a) Extra 0.2 fuel unit per cycle

(b) Extra 0.5 fuel unit per cycle

(c) Extra 1 fuel unit per cycle

Figure 4.8: Simulated foraging:T = 20, Fuel is limited to 500 cycles. The
aggression method is spending more than it claims. In all of these, EI was given a
weight of 0.3 when calculating fuel costs.
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(a) Extra 0.2 fuel unit per cycle

(b) Extra 0.5 fuel unit per cycle

(c) Extra 1 fuel unit per cycle

Figure 4.9: Simulated foraging:T = 20, Fuel is limited to 500 cycles. The noise
method is spending more than it claims. In all of these, EI wasgiven a weight of
0.3 when calculating fuel costs.
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(a) Extra 0.2 fuel unit per cycle

(b) Extra 0.5 fuel unit per cycle

(c) Extra 1 fuel unit per cycle

Figure 4.10: Simulated foraging:T = 20, Fuel is limited to 500 cycles. The repel
method is spending more than it claims. In all of these, EI wasgiven a weight of
0.3 when calculating fuel costs.
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Figure 4.11: Simulated foraging:T = 20, resource cost unknown.

EI-based method is extremely robust to resource spending measurement.
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(a) Leaky aggression.

(b) Leaky noise.

(c) Leaky repel.

Figure 4.12: Simulated foraging: The average standard deviation of the number
of collected pucks, whenT = 20, fuel is limited to 500 cycles, and the methods
spend 0.2, 0.5, and 1 additional fuel unit for every cycle of operation. In all of
these, EI and ACIM were given a weight of 0.3 when calculating fuel costs.
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4.3 Foraging in AIBO Robots

We have also utilized EI-based adaptation in foraging experiments with real

robots. The application to physical robots presents a number of challenges com-

pared to the application in simulation:

• First, learning times are considerably shorter, due to the limited battery

power available. Thus this evaluates the ability of EI to converge to use-

ful values quickly.

• Second, the number of robots is smaller, and thus effects that are due to the

number of robots might not come into play. In our experiments, we used

three robots (see experiment setup description below).

• Third, there is considerable uncertainty in motion and sensing which might

cause robots to misbehave, compared to their simulated counterparts. For

instance, robots might become entangled, or may try to use coordination

with a fixed obstacle (which they cannot recognize); robots may also face

difficulties in leading a puck to the goal location.

The experiment setup is shown in Figure 4.13. Three Sony AIBO robots were

placed within a boxed arena, measuring 2m by 2m, and containing four pucks

(red aluminum cans, with some additional weight). Each robot is equipped with

a camera, for recognizing color, and infra-red sensors thatallow it to measure

distance (up to 90cm) in the direction of the head. The robotswere allowed up

to 10 minutes to collect the pucks, by bringing them to the goal area in one of

the corners (marked blue). Every puck that was brought to thegoal area was

physically removed by the experimenters and moved outside of the arena. This

ensured that pucks in the goal area did not confuse the robots.

We implemented three coordination method: Two basic coordination methods,

NoiseandRepel(described above), and the stateless Q-learning method using the

EI reward. Due to the extensive training period required (well beyond battery life),

we did not carry out a comparison with Rosenfeld et al.’s ACIM method. We ran

ten trials with each of the three methods. However, due to technical failures, some

of the data was destroyed and so we were left with eight trialsof Noise, nine of

Repel, and ten of EI.
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Figure 4.13: Three Sony AIBO robots executing a foraging taskin our laboratory.
The goal location is in the top left corner. Every puck collected was taken out of
the arena.

We faced several challenges in applying EI to the robots. First, we found that

the time-limit was not sufficient to allow EI to train. We thusallowed preliminary

learning to take place, for approximately 15 minutes. The EIvalues at the end

of this period (which were not optimal) were used as the initial values for the EI

trials. Each of the ten trials started with these initial Q table values, and the Q

updates continued from this point.

Second, the robots cannot detect conflicts with certainty. For instance, a robot

bumping into the walled side of the arena would detect a conflict. Moreover,

some collisions between robots cannot be detected, due to their limited sensing

capabilities. We solved this by allowing the operator to initiate conflicts by a fixed

procedure.

Finally, we found that sometimes robots failed catastrophically (i.e., suffered

hardware shutoff). So as to not bias the trials, we measured the average time per

puck retrieved. This allowed us to compare runs of differentlengths (each up to

10 minutes or the first robot failing catastrophically).

We contrasted the performance of the three groups (Noise, Repel, and EI).

Figure 4.14 shows the median number of pucks collected per minute by each of
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the three methods. The X axis shows the three methods. The Y axis measures the

median number of pucks collected.
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Figure 4.14: AIBO foraging: Pucks collected per minute (median). Higher result
is better.

We found that Repel (selected by all three robots) is the best technique. The

EI method did better than Noise, but did not reach the resultsof Repel. To some

degree, this is to be expected, because the EI algorithm utilized constant explo-

ration rate (up to 19% of the conflicts of each robot). Thus even under the best of

conditions, the EI runs are expected to worse than the best performing method.

We see the same trend in Figure 4.15, which shows the average number of

conflicts in the different groups. Here the X axis again showsthe three methods.

The Y axis measures the mean number of conflicts. We see that the number of

conflicts in learning is between Repel and Noise.

To show that indeed the fixed exploration rate had a significant contribution to

the results, we also examine the EI-based rankings of the noise and repel methods

(i.e., whether the EI values ultimately prefer repel or noise). Figure 4.16 shows the

average EI values that were achieved at the end of each run. The X axis shows the

robot in question. The Y axis shows negative EI values (−EI), thus the 0 line is at

the top. We remind the reader that our goal is to minimize EI, i.e., prefer smaller
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Figure 4.15: AIBO foraging: Mean number of conflicts. Lower result is better.

negative results. Thus a higher results is better. For each robot, we see two bars:

One for the EI value of Repel, and one for Noise. We see that in all three robots,

the EI values learned for Repel are better (lower). Thus left to choose based on the

EI values, all robots would have chosen the Repel method (the optimal choice).
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Figure 4.16: AIBO foraging: Negative EI values for Noise and Repel for each of
the three robots (higher is better).
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Chapter 5

Why EI Works? And Why it Does

Not?

We now turn to discuss the use of EI as a reward function, from an analytical

perspective. We are interested in exploring the conditionsunder-which we expect

EI to be effective. There are common themes that run through all the tasks in

which EI has been successful: (i) loose coordination between the robots (i.e., only

occasional need for spatial coordination); (ii) a cooperative task (the robots seek to

maximize group utility); and (iii) a fixed time (deadline) for completing the task.

We refer to these tasks asLCT tasks(Loose-coordination, Cooperative, Timed

tasks).

For instance, in foraging, we see that robots execute their individual roles

(seeking pucks and retrieving them) essentially without any a-priori coordination.

When they become too close to each other, they need to spatially coordinate. The

robot all contribute to the team goal, of maximizing the number of pucks retrieved.

Moreover, they have limited time to do this. Incidentally, they also have finite

number of pucks, which break some of the assumptions we make below. We shall

come back to this.

Computing optimal plans of execution for tasks such as foraging is purely a

theoretical exercise in the current state of the art. In practice, determining detailed

trajectories for multiple robots in continuous space, withall of the uncertainties

involved (e.g., pucks slipping from robots’ grips, motion and sensing uncertainty),
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is infeasible. Much more so, when we add the a-priori selection of coordination

methods in different points in time. We therefore seek alternative models with

which to analytically explore LCT tasks.

5.1 LCT Tasks as Extensive-Form Games

We utilize game theory to analyze LCT tasks. As we have alreadynoted, each

individual robot’s perspective is that its task execution is occasionally interrupted,

requiring the application of some coordination method in order to resolve a spatial

conflict, to get back to task execution. Starting in this subsection, we will make a

series of simplifying assumptions and analysis steps that will show that it might

be possible to view LCT tasks from a game theoretic perspective. Our objective is

therefore to contribute an analytical first step towards a formal understanding of

why EI works in real-world LCT tasks.

For the initial part this discussion, we assume for simplicity that we limit our-

selves to two robots. This is a strong assumption, as in actuality, most often LCT

tasks often involve more than two robots. We address this assumption later in this

section. In particular, we show that the convergence of EI learning is assured in

particular in cases where (many) more than two robots make upthe group.

We make an additional assumption, which is not as strong, that conflicts al-

ways involve two robots only, and that they are both aware of it, and they both

enter the conflict at the same time. This assumption often holds in practice, since

when one robot’s sensors detect a conflict, most often so doesthe other robot’s.

At first glance, it may seem possible to model LCT tasks as a series of single-

shot games (i.e., repeating games), where in each game the actions available to

each robot consist of the coordination methods available toit. The joint selection

of methods by the two robots creates a combination of methodswhich solves the

conflict (at least temporarily). The payoffs for the two robots include the pucks

collected in the time between games, minus the cost of resources (including time)

spent making and executing the selected methods. The fact that there exists a time

limit to the LCT task in question can be modeled as a given finitehorizon.

However, finite-horizon repeating games are not a good modelfor LCT tasks.

In particular, the methods selected by the robots in one point in time affect the
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payoffs (and costs) at a later point in time. First, the choice of coordination meth-

ods at timet affects the time of the next conflict. One coordination method may

be very costly, yet reduce the likelihood that the robots getinto conflict again;

another method may be cheap, but cause the robots to come intoconflict often.

Second, the robots change the environment in which they operate during the time

they are carrying out their tasks, and thus change future payoffs. For instance,

robots collect pucks during their task execution time, and often collect those near-

est the goal area first. Thus their payoff (in terms of pucks collected) from games

later in the sequence is lower than from games earlier on.

We thus utilize a model of LCT tasks as extensive-form games. The initial

node of the game tree lies at the time of the first conflict,ci,1, and the choices

of the first robot at this time lead to children of this node. Asthe two robots act

simultaneously, these children also occur at timeci,1. Also, note that the selections

of the robots are not observable to each other1. An illustration of the game tree

appears in Figure 5.1.

Following each simultaneous choice of methods by the robots, the chosen

combination of coordination methods is executed (during coordination timeIa
i,j),

and this is followed by a period of task executionI
p
i,j. The game ends when to-

tal time T runs out. The payoffs to the robots are then given as the number of

pucks retrieved, minus the cost of resources spent on the task. Terminal nodes

may appear anywhere in the game tree, as some selections of the robots lead to

less conflicts, and thus greater opportunity for task execution.

Under ideal—and purely theoretical conditions—the robotswould know the

payoffs awaiting them in each terminal node, and would thus be able to, in prin-

ciple, compute a game-playing strategy that would maximizethe team’s utility.

To do this, the robots would need to know the times spent resolving conflicts and

executing the task, and would also need to know (in advance) the gains achieved

during each task-execution period. Even ignoring the gains, and assuming that

maximizing task-execution time
∑

i

∑
j I

p
i,j is sufficient, the robots would be re-

quired to know all conflict resolution times in advance. Thisis clearly impractical,

1This is true in all communication-less coordination methods, which are used in most previous
work [39, 34]. When used with communication-based coordination method, this restriction may
be removed. It might also be possible to relax this restriction if robots could infer each others’
choices post-factum.
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Figure 5.1: An illustration of the extensive-form game treefor an LCT task. Con-
flict times are denoted in the nodes. Terminal nodes (total time=T ) are dark. Note
that the second conflictci,2 may occur at different absolute times depending on
the choices of the robots at timeci,1.
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as it requires predicting in advance all possible conflicts and their durations and

effects. And the sheer size of the game tree (there are hundreds of conflicts in

a typical foraging task, as presented in the previous section) makes learning it a

difficult task at best. We are not aware of any method capable of learning the

terminal payoffs or node-associated durations and effectsfor the type of domains

we study in this paper.

5.2 Modeling LCT Tasks as a Matrix Game

We thus make a simplifying assumption, that all effects of coordination method

selections remain fixed, regardless of where they occur. In other words, we assume

that the joint execution of a specific combination of selected coordination methods

will always cost the same (in time and resources), regardless of the time in which

the conflict occurred. Moreover, the assumption also implies that we assume that

the task-execution time (and associated gains)—which depends on the methods

selected—will also remain fixed. We state this formally:

Assumption 1. Let α be a coordination method, selected by roboti. We assume

that for any0 ≤ j, k ≤ Ki, the following hold:

Ia
i,j(α) = Ia

i,k(α), I
p
i,j(α) = I

p
i,k(α), CC

i,j(α) = CC
i,k(α)

This strong assumption achieves a key reduction in the complexity of the

model, but gets us farther from the reality of LCT multi-robottasks. However,

the resulting model provides an intuition as to why and when EI works. In Sec-

tion 5.4 we examine the assumptions of the model and their relation to the reality

of the experiments.

The duration of coordination method execution (Ia
i ), and the duration of the

subsequent conflict-free task-execution (I
p
i ), are fixed; they now depend only on

the method selected, rather than also on the time of the selection. Thus a path

through the game tree can now be compressed. For each combination of selected

coordination method, we can simply multiply the costs and gains from using this

combination, by the number of conflicts that will take place if it is selected.
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Thus we can reduce the game tree into a matrix game, whereKi,j is the number

of conflicts occurring within total timeT that results from the first robot selecting

αi, and the second robot selectingαj. Ui,j is the utility gained from this choice.

This utility is defined as:

Ui,j ≡ [gain(Ip
i (αi) + gain(Ip

j (αj))]

− [CC
i (αi) + CC

j (αj)] (5.1)

where we use (for roboti) the notationgain(Ip
i (αi)) to denote the gains achieved

by roboti during the task execution timeIp
i (αi). Note that we treat these gains

as being a function of a time duration only, rather than the methodα, which only

affect the time duration. Underlying this is an assumption that the coordination

method choice affect utility (e.g., the pucks acquired) only indirectly, by affecting

the time available for task execution. We assume further that gains monotonically

increase with time. Maximizing the time available, maximizes the gains.

Table 5.1 is an example matrix game for two robots, each selecting between

two coordination methods. Note however that in general, there areN robots and

|M |methods available to each.

α2
1 α2

2

α1
1 K1,1U1,1 K1,2U1,2

α1
2 K2,1U2,1 K2,2U2,2

Table 5.1: LCT task as a matrix game, reduced from the LCT game tree by As-
sumption 1. Entries hold team payoffs.

Note that the robots do not have access to the selections of the other robots,

and thus for them, the game matrix does not have a single common payoff, but

individual payoffs. These are represented in each cell by rewriting Ki,jUi,j as

Ki,jui(αi), Ki,juj(αj), where

uk(αk) ≡ gain(Ip
k(αk))− CC

k (αk).

This results in the revised matrix game appearing in Table 5.2.

The number of conflictsKi,j is really the total timeT , divided by the duration

of each conflict cycle, i.e.,Ia + Ip. Thus the individual payoff entries for robotl
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α2
1 α2

2

α1
1 K1

1,1u1(α
1
1), K

2
1,1u1(α

2
1) K1

1,2u1(α
1
1), K

2
1,2u2(α

2
2)

α1
2 K1

2,1u2(α
1
2), K

2
2,1u1(α

2
1) K1

2,2u2(α
1
2), K

2
2,2u2(α

2
2)

Table 5.2: An example LCT task as a matrix game, with individual payoffs.

selecting methodαk can be rewritten as T
Ia
l
(αk)+I

p

l
(αk)

ul.

Let us now consider these individual payoffs. The payoff foran individual

robotl that selectedα is:

T [g(Ip
l (α))− c(Ia

l (α))]

Ia
l (α) + I

p
l (α)

∝

g(Ip
l (α))− c(Ia

l (α))

Ia
l (α) + I

p
l (α)

(5.2)

∝

I
p
l (α)− c(Ia

l (α))

Ia
l (α) + I

p
l (α)

(5.3)

These two steps require some explanation. First, of course,since for all entries

in the matrixT is constant, dividing byT maintains the proportionality. The

second step is key to the EI heuristic. It holds only under certain restrictions on

the nature of the functiongain(), but we believe these restrictions hold for many

gain functions in practice. For instance, the step holds whenevergain() is linear

with a coefficient greater than 1. Now:

I
p
l (α)− c(Ia

l (α))

Ia
l (α) + I

p
l (α)

=
I

p
l (α) + [Ia

l (α)− Ia
l (α)]− c(Ia

l (α))

Ia
l (α) + I

p
l (α)

(5.4)

=
[Ip

l (α) + Ia
l (α)]− [Ia

l (α) + c(Ia
l (α))]

Ia
l (α) + I

p
l (α)

(5.5)

=
I

p
l (α) + Ia

l (α)

I
p
l (α) + Ia

l (α)
−

Ia
l (α) + c(Ia

l (α))

Ia
l (α) + I

p
l (α)

(5.6)

= 1− EIl(α) (5.7)

∝ −EIl(α) (5.8)

Thus the game matrix is in fact equivalent to the following matrix (Table 5.3).

Here, each robot seeks to minimize its own individual EI payoff (maximize its -EI

payoff). If robots minimize their individual EI payoffs, and assuming that their

equilibrium is Hicks optimal (i.e., the sum of payoffs is maximal), then solving

this game matrix is equivalent to maximizing group utility.
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α2
1 α2

2

α1
1 −EI1(α

1
1),−EI2(α

2
1) −EI1(α

1
1),−EI2(α

2
2)

α1
2 −EI1(α

1
2),−EI2(α

2
1) −EI2(α

1
2),−EI(α2

2)

Table 5.3: LCT task as an EI matrix game.

5.3 Learning Payoffs in LCT Matrix Games

Unfortunately, when the robots first begin their task, they do not know the payoffs,

and thus rely on the reinforcement learning framework to converge to appropriate

EI values. Of course, it is known that Q-learning does not, inthe general case,

converge to equilibrium in 2-player repeated games [8, 42, 17]. However, there

are a number of features that hold for the EI game matrixin the domains we study,

which makes the specific situation special.

First, the game matrix is theoretically symmetric. Because robots are homoge-

neous, a combination of coordination methods〈α1, α2〉will yield the same payoffs

as〈α2, α1〉.

Second, we know that for the specific game settings, one combination yields

optimal payoffs (in the sense that the sum of robot payoffs isoptimal). Although

it is now accepted that no one coordination method is always best in all settings,

it is certainly the case that in a specific scenario (e.g., a specific conflict, a specific

group size), a combination can be found which is best.

Third, the value ofEI for the optimal individually-selected methodα1
j can

only decrease if the other robot does not select an optimal method α2
k. Under

normal conditions, the numerator of theEI value,Ia
1 (α1

j ) + CC(α1
j ) is dependent

only on the execution ofα1
j by the robot. On the other hand, the denominator

Ia
1 (α1

j ) + I
p
1 (α1

j ) can only decrease (because the time to the next conflict,I
p
1 (α1

j )

can only decrease, by definition). Thus, theEI value can only grow larger (i.e.,

−EI grows smaller). Selection of the optimalEI values is thus dominant.

Finally, and most importantly, the games that take place here arenot between

two players. Rather, the process is more akin to randomized anonymous matching

in economics and evolutionary game theory2. In this process, pairs of players are

randomly selected, and they do not know their opponents’ identity (and thus do

not know whether they have met the same opponents before).

2We thank Sarit Kraus for this observation.
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Indeed, this last quality is crucial in understanding why our use of EI works. It

turns out that there exists work in economics that shows thatunder such settings,

using simple reinforcement learning techniques (in our case, stateless Q-learning)

causesthe populationto converge to Nash equilibrium, even if mixed [19]. Thus

rather than having any individual agent converge to the mixed Nash equilibrium,

the population as a whole converges to it, i.e., the number ofagents selecting a

specific policy is proportional to their target probabilities under the mixed Nash

equilibrium.

In particular, Hopkins lists several conditions for this population conver-

gence [19]. First, the game matrix must be symmetric [19, pg.95], as is ours.

Second, agents update their reward estimates using fictitious play or stimulus-

response learning (which essentially corresponds to our stateless reinforcement

learning approach) [19, pg. 101–102]. Finally, The agents randomly select their

initial methods; in our case this is also true. Under these conditions, Hopkins

shows that the population of the agents converges to an evolutionary-stable Nash

equilibrium.

There remains the question of whether indeed we can guarantee that agents

converge to the maximal team-payoff Nash equilibrium, if more than one equi-

librium exists. We again turn to economics literature, which shows that for coor-

dination games—including even the difficult Prisoner’s Dilemma game—agents

in repeated randomized matching settings tend to converge to the Pareto-efficient

solution [9, 31]. However, these works typically assume public knowledge of

some kind, which is absent in our domain. Thus we cannot conclude definitely

that the use of stateless EI reinforcement-learning will necessarily converge to

the group-optimal solution (the maximal group utility). This question remains,

unfortunately, open.

5.4 Revisiting the EI Experiments

Armed with the analytically-motivated intuition as to why EI works, we now go

back to re-examine the experiment results. In general, there are of course differ-

ences between the analytical intuitions and assumptions and the use of EI in a

reinforcement learning context: (i) the values learned areapproximations of the
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EI values, which cannot be known with certainty; (ii) the assumptions allowing

reduction of the LCT extensive-form game tree to a game matrixdo not hold in

practice; and (iii) even the assumptions underlying the extensive-form game tree

(e.g., that robots start their conflict at the same time, or that their gains depend only

on time available for task execution) are incorrect. We examine specific lessons

below.

We begin with the teambots simulation experiments, where EIwas highly suc-

cessful, and was also demonstrated to be robust to unknown costs. Despite the fact

that the domain cannot be reduced to the matrix game form, it turns out that some

of the assumptions are approximately satisfied, which explain the success of EI

here.

First, the fact that about half the pucks moved randomly helped spread them

around the arena even after many pucks were collected. Thus the gains expected

later in the task were closer to the gains at the beginning to the task, than it would

have been had all pucks been immobile (in which case pucks closer to base are

collected first, resulting in higher productivity in the beginning).

Second, the size of the arena, compared to the size of the robots, was such

that the robots did not need to converge to one optimal combination of selection

methods: Different zones in the arena required different combinations. In princi-

ple, this should have challenged the approach, as the stateless learning algorithm

cannot reason about the robots being in different states (zones). However, as the

robots moved between areas fairly slowly, they were able to adapt to the condi-

tions in new zones, essentially forgetting earlier EI values. This is a benefit of the

stateless algorithm.

Finally, in these simulation experiments, the number of robots was fairly large.

Thus the conditions for convergence to the Nash equilibrium[19] apply.

The situation is different in the experiments with the real AIBO robots. The

limited training time and the limited number of robots (onlythree) raises questions

as to the applicability of Hopkins’ work to this domain. Indeed, the application

of EI stateless algorithms here is less successful than in the simulated foraging

domain.

Another issue with the AIBO robot experiments is the use of thefixed explo-

ration rate. The choice of a fixed exploration rate can hurt performance of the
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algorithm, as is clearly seen in the results of the AIBO foraging experiments. Be-

cause robotsmustexplore, they are sometimes forced to act against their better

knowledge, and thus reduce performance. But this did not affect the results in the

simulation domain, where EI often gave the best results of all methods. We believe

that this is due to the size of the arena, which created different zones as discussed

above. Here exploration was very useful, to enable implicittransition between

states. In contrast, in the AIBO experiments, the size of the arena was so small,

that density remained fixed throughout the arena, and exploration eventually lead

to reduced results.
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Chapter 6

Advanced Use of EI in

Reinforcement Learning

The single-state reinforcement learning framework in which we have utilized EI in

previous chapters leaves several open questions, which we address in this chapter.

First, the use of EI seems to depend critically on the times that define the scope of

conflicts (the active and passive times of a cycle). We address this issue in Section

6.1, in which we show that the EI framework can also learn to select whento de-

clare a conflict.. Then, in Section 6.2 we present the use of EIin a full state-based

Q-learning implementation, i.e., moving away from the simplified stateless algo-

rithm presented earlier, to more common implementations ofQ-learning, in which

learning occurs in multiple states. We show that this can result in very significant

improvements to team performance Finally, in Section 6.3 weshow preliminary

results demonstrating the successful use of EI-based learning of selecting task

actions, rather than coordination methods.

6.1 Learning When to Declare a Conflict

The physical calculation of an EI value depends directly on the decision that a

conflict has occurred. The decision to declare a conflict begins the active portion

of the cycle, in which a coordination method is selected for execution. The conflict

ends when the coordination method finishes execution. Up until now, we have
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assumed a fixed procedure was given, and focused on the use of EI within the

reinforcement learning framework.

However, the decision to declare a conflict can have significant impact on the

use of a coordination method. A fixed coordination methodα may be more or less

successful, depending on when it is called into action. For instance, in examining

spatial coordination in robots, a conflict state occurs whentwo (or more) robots are

too close. But the distance in which the robots decide on a conflict may vary. Thus

the repeal coordination method, for instance, which moves the robot away for a

fixed distance, may cause the robot to end up at a different location, depending on

the initial distance between the robots (the conflict decision).

Indeed, Figure 6.1 shows the effects of variable conflict definition in the sim-

ulated foraging domain. Here, the distance between the robots, which is used to

declare a conflict state, is varied between the default two (2) robot radii (used in

earlier chapters), and eight (8). In the figures, the X axis measures the number of

robots in the team. The Y axis shows the number of pucks collected by a team us-

ing only the repeal method (Figure 6.1-a) or the aggression method (Figure 6.1-b).

Each line corresponds to a different conflict radius definition. The figures clearly

show that different radii significantly change the results of the foraging.

Thus the definition of a conflict can change the behavior of a team. Given a

new domain in which we want to utilize the EI method, we require a way that

adapts also the conflict threshold, as well as selection of the coordination method.

We propose to do this by folding the conflict distance definitions into the meth-

ods, creating multiple methods that involve different distances. LetM be the set

of coordination methods, andR be the set of possible conflict definitions. For

each methodα ∈ M and conflict radiusr ∈ R, we create a methodαr, which

involves theα method at conflict distancer. We then use reinforcement learning

with EI, as before, but allow the EI to select from the space of|R|× |M |methods.

Figure 6.2 shows the results of experiments using this approach in the simu-

lated foraging domain. As before, the X axis measures the number of robots in the

team. The Y axis measures the number of pucks collected. The figure contrasts

several methods and distances:

Repel 2, Repel 8, Aggression 2, Aggression 8.These are fixed methods, which
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(a) Robots using repeal.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 5  10  15  20  25  30  35  40

R
et

rie
ve

d 
pu

ck
s

Team Size

Aggression 2
Aggression 4
Aggression 6
Aggression 8

(b) Robots using aggression.

Figure 6.1: Team performance in the simulated foraging domain. The distance
defining a conflict between two nearby robots is varied from 2 to 8.
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Figure 6.2: Team performance in the simulated foraging domain, using EI to learn
conflict declaration parameters.

utilize repel or aggression (respectively), with a conflictdistance of 2 robot

radii or 8 robot radii. Thus here,M = { Repel, Aggression}, andR = 2, 8.

EI_A2,8_R2,8. The result of using EI-based single-state reinforcement learn-

ing, selecting from the pool of four static combination methodsM × R =

{Repel 2, Repel 8, Aggression 2, Aggression 8}.

RND_A2,8_R2,8.The result of using random selection over the space of four

static combination methodsM×R = {Repel 2, Repel 8, Aggression 2, Ag-

gression 8}.

The different curves in Figure 6.2 shows the results of usingrepeal and ag-

gression (with fixed conflict distances, at 2 and 8 robot radii), as well as the use

of EI or random selection between the combination methods. The results demon-

strate the efficacy of the method in learning methods that also incorporate conflict

timing parameters.
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6.2 Using EI in Reinforcement Learning with Mul-

tiple States

We now move away from the simple single-state Q-learning algorithm (Algorithm

4.1), and explore the use of EI in more familiar Q-learning settings, where the

environment states are taken into account. Here, the reward(−EI) collected for

using a specific coordination methoda is associated with the robot being in a

particular environment states.

The learning algorithm we use is based on the following Q-Learning equation:

Qt(s, a) = Qt−1(s, a) + ρ(Rt(s, a)− γQt−1(s, a))

whereρ is the learning speed factor, andγ is a factor of discounting. As before,

the algorithm uses a constant exploration rateβ.

Two versions of the MSL (Multi-State Learning) algorithm are possible. In

one, the estimated EI values are learned for conflicts that end and begin in the

same state (we call this variant MSLx). In this variant of the algorithm, an agent

that goes into a conflict in a specific states and resolves it, will continue measuring

time in the conflict’s associated passive interval until it returns to the states. Any

other conflicts will be tracked separately. In the other, simpler variant, conflicts

that begin in a state may end anywhere (we call this variant MSL1). This is a more

natural extension to the stateless reinforcement learningalgorithm we have seen

before, as only one conflict is tracked at any given moment.

We use the following notation in the algorithm:

• Q[s, α] is a table with learned EI for all states and actions, wheres ∈ S (S

is the set of environment states), andα ∈M .

• cci is the Current Conflict Index, i.e, a specific conflict for which we are

currently measuring time and costs. In the MSLx variant, it is used to keep

track of multiple conflicts for which information is tracked, and thus takes

on values from the set of statesS. In the MSL1 variant, it is set to a constant

null value (which represents the fact that MSL1 treats a conflict’s active and

passive intervals beginning at a states and ending at any state).
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• SelectedMethod[cci] is a method that currently selected for solving conflict

associated withcci.

• ConflictState[cci] is a state where conflict associated withcci is started.

• SolvingT ime[cci] is a time moment when conflict associated withcci has

been solved.

• BgnCycleT ime[cci] is a time moment when conflict associated withcci is

started.

• EndCycleT ime[cci] is a time moment when previous conflict cycle asso-

ciated withcci is ended (e.i. new conflict associated withcci is started).

• Cost[cci] is a cost spent for solving conflict associated withcci (i.e. this is

Active Coordination Cost).

• Counter[cci] is counter of conflicts associated withcci.

To evaluate the use of the two MSL variants, we applied them ina challenging

domain, involving discrete maze-like environments, in which narrow corridors

require agents to coordinate their movements to reach from one location to the

next. Figure 6.3 shows the two test environments. In one, there are two goal

locations; in the other, five. All agents within the environments (up to 20) can

move in the 4 basic directions (north, south, east, west) in each time step. Each

agent randomly picks a goal location and attempts to move to it; once the goal

is reached, the agent picks another goal. Since agents cannot pass through each

other, nor through walls, they require coordination in navigating in the narrow

corridors of the mazes.

In these two environments, we ran hundreds of repeated trials, each a thousand

steps long. The exploration rateβ was fixed at 0.2; the learning factorρ was set

to 0.8 by default (a second set of experiments varies this values); and the discount

factorγ was set was to 1.0.

Figure 6.4 below shows the results. Here, the X axis marks thenumber of

agents in the environment. The Y axis marks the number of goals achieved by the

group of agents (the sum of their individual achievements).The figure shows a
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Algorithm 2 Multi-State EI-Based Learning (MSL)
Require: β ∈ [0, 1] – rate of exploration vs exploitation
Require: ρ ∈ [0, 1] – learning speed factor
Require: γ ∈ [0, 1] – learning discount factor
Require: M – a set of coordination algorithms
Require: A way of measuring accumulating coordination resource costs
Require: A way of current state observation
Require: A way of checking current time or step number in case of discrete sys-

tem.
1: for all cci ∈ members ofCount do
2: Count[cci]← 0
3: for all (s, α) ∈ S ×M do
4: Q[s, α]← random([0, 1])
5: cci← ε {This line for MSL1 only}
6: while robot is activedo
7: WAIT FOR CONFLICT EVENT
8: s← ObsorveState()
9: cci← s {This line for for MSLx only}

10: Count[cci]← Count[cci] + 1
11: EndCycleT ime[cci]← CurrentTime()
12: if Count[cci] > 1 {Not First Conflict for current state}then
13: ta ← SolvingT ime[cci]−BgnCycleT ime[cci]
14: tp ← EndCycleT ime[cci]− SolvingT ime[cci]

15: EI ← − ta+Cost[cci]
ta+tp

16: ω ← ConflictState[cci]
17: α← SelectedMethod[cci]
18: Q[ω, α]← Q[ω, α] + ρ · (EI − γ ·Q[ω, α])
19: BgnCycleT ime[cci]← EndCycleT ime[cci]
20: ConflictState[cci]← s

21: if β > random([0, 1]) then
22: SelectedMethod[cci]← random(M)
23: else
24: SelectedMethod[cci]← argmaxα∈MQ[s, α]
25: EXECUTE SelectedMethod[cci] {Record resource spending to

Cost[cci]}
26: SolvingT ime[cci]← CurrentTime()
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(a) Maze with two goals. (b) Maze with five goals.

Figure 6.3: Discrete environment requiring coordination to navigate between
goals. Filled squares denote walls and obstacles, four-point stars mark goal lo-
cations, empty/passable positions marked white.

clear difference between the stateless reinforcement learning technique presented

earlier (here, called SSL for Single-State Learning), and the multi-state reinforce-

ment learning described in this section. Specifically, multi-state reinforcement

learning in this domain proves extremely useful.

Since the discount factor has significant impact on the success of reinforce-

ment learning algorithms, we also vary the discount factor in a final set of experi-

ments, and reduce it from 1.0 to 0.2. The results are presented in Figure 6.5. The

figure demonstrates that reducing the discount factor did not, in factor, change the

results of the analysis, and indeed may indeed slight reduceperformance.

6.3 EI-Based Learning of Task-Oriented Decisions

Finally, we evaluated the use of EI with robots in virtual environments. Here, we

utilized robots that operate in VR-Forces[27], a commercialhigh-fidelity simula-

tor. Each robot controls a simulated entity in the environment, and must carry out

its own path planning and decision-making. A bird’s eye viewof the experiment

setup is shown in Figure 6.6.

Within this environment, we conducted experiments with four virtual robots,

where the coordination was implicit, rather than explicit.All of the four robots
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(a) Learning results after 1000 cycles, in the maze with two goals. Results are con-
trasted with the random-coordination algorithm, as well aswith each of the fixed
methods by itself.
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(b) Learning results after 1000 cycles, in the maze with five goals.

Figure 6.4: Results from the maze experiments.

59



 0

 20

 40

 60

 80

 100

 5  10  15  20  25  30

G
oa

ls

Team Size

MSL1_LF-0.8_DF-0.2
MSLx_LF-0.8_DF-0.2
RND_LF-0.8_DF-0.2
SSL_LF-0.8_DF-0.2

Figure 6.5: Learning results after 1000 cycles, in the maze with two goals.

Figure 6.6: A screen shot of VR-Forces experiment setup. The screen shows a
bird-eye view of the virtual environment, and the corridorsin which the simulated
entities (robots) travel.
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Figure 6.7: Results in the virtual environment domain.

had the goal of getting to a target location. They could do this through one of

two paths, the first (path1) slightly shorter than the other (path2). Each path was

built from 5–10 navigation points, which the robots go through in sequence to

travel through the path. Actual travel times through the paths vary, and are not

just a function of the path length: First, when robots move onthe same path,

they sometimes crowd the path and cause delays in moving on it(e.g., if robots

collide or block others from reaching a navigation point); second, because this is a

high-fidelity simulation, the actual movement velocity of the robots is not always

the same, and varies slightly from one run to the next. The result is that it is not

immediately obvious how robots should divide up the paths between them. Using

EI to select between the paths is not a selection of a coordination method, but is

instead a selection of a task, such that coordination is implicit.

We conducted 21 runs, where the EI values were saved from one run to the

next. The results of these runs are shown in Figure 6.7. The X axis lists the four

different robots (agents),A–D. The Y axis measures the number of runs (out of

the 21) that each agent selected a particular path. The two bars mark, for each

agent, the path selections:path1 or path2.

The results show convergence of the first three robots to selectingpath1, while
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the fourth and last robot jumps back and forth betweenpath1 andpath2. When

we examine the results in detail, we discover that indeed thedecision of the fourth

robot is difficult: On one hand, four robots onpath1 often interfere with each

other. On the other hand, the use ofpath2 does add to the overall task time of

the robot. Thus the EI values are very close to each other, andthe robot in fact

converges to arbitrary selection between the two paths.

An interesting lesson can be learned from the experiments inthe virtual en-

vironment. Here, EI was applied to a task that it was not meantfor, involving

implicit, rather than explicit, coordination. The nature of this task is that there is

more than one single equilibrium point, as two combination of paths are possible.

Thus our intuition as to the convergence properties of the EIalgorithm should not

hold. However, the algorithm converged quickly to selecting between two almost

equally-valued alternatives, reflecting the two top choices.
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Chapter 7

Conclusions and Future Work

This thesis examined in depth a novel reward function for cooperative settings,

called Effectiveness Index (EI). EI estimates the resourcespending velocity of a

robot, due to its efforts spent on coordination. By minimizing EI, robots dedi-

cate more time to the task, and are thus capable of improving their team utility.

We used EI as a reward function for selecting between coordination methods, by

reinforcement-learning. This technique was shown to work well in three different

domains: Simulation-based multi-robot foraging, real AIBOmulti-robot forag-

ing, and high-fidelity commercial virtual environment. Theexperiments explore

the scope of the technique, its successes and limitations. In addition, we have

formally explored multi-robot tasks for which EI is intended. We have shown that

under some assumptions, EI emerges analytically from a game-theoretic look at

the coordination in these tasks. We believe that this work represents a step towards

bridging the gap between theoretical investigations of interactions, and their use

to inform real-world multi-robot system design. Improved results can be achieved

by extending both the theory underlying the use of EI, and thelearning algorithms

in which it is used.
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