Ami Amir
Bar-Ilan & Georgia Tech

Amel Cohen
Mona M. Landau
Haifa & Polytechnic

Malka Schaps
Bar-Ilan

Maxime Crochemore
Mona M. Landau
We need a model.

Landau & Vishkin 1994
developed a model for
discretizing the digitization process.

Fredriksson & Ukkonen 1998
developed a similar
Geometric Model
for discrete rotations.
Fig. 1. The text grid and pixel centers of a 7 x 7 text.
PROPOSED SOLUTION:

Construct all possible rotated patterns.

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>1,2</th>
<th>3</th>
<th>5</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>4,8</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>13,9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>10</td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>12</td>
<td>14</td>
<td>15</td>
</tr>
</tbody>
</table>

5a 5b 5c

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>2</th>
<th>3</th>
<th>3</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>6</td>
<td>7</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>13</td>
<td>10</td>
<td>11</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>10</td>
</tr>
<tr>
<td>14</td>
<td>15</td>
<td>12</td>
<td>14</td>
<td>15</td>
<td>12</td>
<td>15</td>
<td>16</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>16</td>
</tr>
</tbody>
</table>

5d 5e 5f

Fig. 5. An example of some possible 2-dimensional arrays that represent one pattern. Fig 5a - the original pattern. Figures 5b-d are computed in the "pattern over the text" model. Fig 5b - a representation of the pattern rotated by 19°. Fig 5c - Pattern rotated by 21°. Fig 5d - Pattern rotated by 20°. Figures 5e-f are computed in the "pattern under the text" model. Fig 5e - Pattern rotated by 17°. Fig 5f - Pattern rotated by 26°.
Every rotated pattern can be found in the text using FFT in time:

\[O(n^2 \log m) \]

If there are \(N \) rotated patterns the total time is:

\[O(N n^2 \log m) \]

WHAT IS \(N \)?
UPPER BOUND

m^2 pixels

Each pixel center crosses at most $4m$ grid lines.

$\Rightarrow \bigO(m^3)$ different rotated patterns.
Could many points cross a gridline together?

We will show:

Lower Bound: $\Omega(m^3)$

Restriction:

Set $P =$

1) Points in Quadrant I

2) Points (x, y) where x and y are co-prime.
 \[
 (\gcd(x, y) = 1)
 \]
WE WILL SHOW: \(\forall X_1, X_2 \in \mathbb{P} \)

It is impossible that \(X_1 \) and \(X_2 \) cross grid line at same angle.

How does it help?

\[
\| P \| = \frac{6m^2}{\pi^2} + o(m \log m)
\]

(\textit{Geometry Thm}).

Consider:

\[
P_\frac{m}{4} = \left\{ (x,y) \mid (x,y) \in \mathbb{P}, \quad 0 \leq x, y \leq \frac{m}{4} \right\}
\]
Schematically: $P \cap$ shaded area

In shaded area: $\frac{m^2}{16}$ points.
So in $P - P \leq \frac{m}{4}$, at least

$$\frac{6m^2}{\pi^2} - \frac{m^2}{16}$$
points, i.e.

$$\frac{96 - \pi^2}{16 \pi^2} m^2 = \Theta(m^2)$$
points.
Each of the $\Theta(m^2)$ points in $P_1P_2\leq\frac{m^3}{r}$ crosses the grid $\Omega(m)$ times, and no two of them cross together.

Conclude: There are $\Omega(m^3)$ different rotated patterns.

Left to show:
Lemma: $\forall x_1, x_2 \in \mathcal{P}$

It is impossible for them to cross a grid line at the same angle.

Proof:
We discuss the case where x_1 crosses horizontal grid line to x_2, and x_2 crosses horizontal grid line to x_1.

(Other cases, both crossing vertical or one vertical & one horizontal, are similar.)

Let $X_i = (c, s)$, $Y_i = (c', s')$.
c, s are odd.

$$c = 2k_1 + 1$$
$$s = 2k_2 + 1$$
S' is even \[S' = 2l_1 \]

\[c^2 + s^2 = r^2 = (2k_1 + 1)^2 + (2k_2 + 1)^2 \]

\[c'^2 + s'^2 = r^2 \]

\[c'^2 + 4l_1^2 = (2k_1 + 1)^2 + (2k_2 + 1)^2 \]

\[c'^2 = (2k_1 + 1)^2 + (2k_2 + 1)^2 - 4l_1^2 = 4(k_1^2 + k_1 + k_2^2 + k_2l_1^2) + 2 \]

So \[c'^2 \] is even. \[c'^2 = 2l_2 \]

\[2l_2 = 4(k_1^2 + k_1 + k_2^2 + k_2l_1^2) + 2 \]

\[l_2 = 2(k_1^2 + k_1 + k_2^2 + k_2l_1^2) + 1 \]
Conclude:

\[c' = \sqrt{2} l_2 \quad \text{where } l_2 \text{ is odd} \]

\[s' = 2 l_1 \]

We can say even more:

\[c' = m \sqrt{2} m \]

where \(n \in \mathbb{Z}^+ \)

and \(m \) is a square-free odd number

(does not have a square factor)

i.e. \(c' \) is an irrational number.
Fig. 8. Points X_1 and X_2 each have coprime integer coordinates. Orbits of them under rotation around point O cross an horizontal line at points Y_1 and Y_2 respectively. Then, $\angle X_1OX_2 \neq \angle Y_1OX_2$ by Claim 3.
CLAIM: $\angle x_1 o y_1 \neq \angle x_2 o y_2$.

Proof: We show $\angle x_1 o x_2 \neq \angle y_1 o y_2$.

$x_1 = (c_1, s_1)$ \hspace{1cm} $y_1 = (c_1', s_1')$

$x_2 = (c_2, s_2)$ \hspace{1cm} $y_2 = (c_2', s_2')$

$\sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta$

\[
\sin \angle x_1 o x_2 = \frac{c_2 s_1 - s_2 c_1}{r_2 r_1}
\]

Similarly:

$\sin \angle y_1 o y_2 = \frac{s_1' c_2' - s_2' c_1'}{r_1 r_2}$
If $\angle x, ox_2 = \angle y, oy_2$ then
\[
\sin \angle x, ox_2 = \sin \angle y, oy_2 \quad \text{i.e.}
\]
\[
s_1c_2 - s_2c_1 = s'_1c'_2 - s'_2c'_1
\]
\[
m \in \mathbb{Z}
\]

What do we know?
\[
s'_1, s'_2 \in 2\mathbb{Z}
\]
\[
c'_1 = m_1\sqrt{2m_1}
\]
\[
c'_2 = n_2\sqrt{2m_2}
\]

where c'_1, c'_2 irrational.

We have:
\[
a\sqrt{2m_1} + b\sqrt{2m_2} \in \mathbb{Z}, \text{ where } a, b \in \mathbb{Z}
\]

When can this happen?
Options:

1) \(m_1 \neq m_2 \)

Can not happen since \(a, b \in \mathbb{Z} \) and \(\sqrt{2m_1}, \sqrt{2m_2} \) are linearly independent in \(\mathbb{Z} [\sqrt{2m_1}, \sqrt{2m_2}] \).

2) \(m_1 = m_2 \)

\[a \sqrt{2m_1} + b \sqrt{2m_1} \in \mathbb{Z} \]
\[\sqrt{2m_1} (a + b) \in \mathbb{Z} \quad \text{iff} \quad a = -b \]

\[a \sqrt{2m_1} + b \sqrt{2m_1} = 0 \]
\[\Rightarrow \]
\[S_1 C_2 - S_2 C_1 \]
When can \[S_1 C_2 = S_2 C_1 \]?

\[
\frac{S_1}{C_1} = \frac{S_2}{C_2}
\]

Since \((c, s)\) are relatively prime, this can only happen if

\[S_1 = S_2 \quad \text{and} \quad C_1 = C_2 \]

i.e. \[X_1 = X_2. \]
WHAT IS LEFT?

Faster rotation.
Approximate rotation.
Approximate scaling.
Integration.

We have come a long way
but have a lot longer way
to go...