Proof:

⇒ Obvious.

⇐ Assume all generated 4-leaf subtrees are homeomorphic.
Prove: 2 trees are homeomorphic.

Def. Let \(u \) be a node of degree \(\geq 2 \). We call \(u \) a super-2 node. Two nodes \(a, b \) are twins if in the path from \(a \) to \(b \) are at most one internal node which is a super-2 node, and \(a, b \) are leaves.
Claim: A tree with at least 2 leaves and a super 2 node has a pair of twins.

Proof: Let T be a tree with at least 2 nodes. Consider a, b such that the path from a to b has the largest number of internal super 2 nodes. Let v be the closest super 2 node to a.

v is super-2 so 3 leaf c such that there is a path from v to c.
It is clear that there are no super-2 nodes on the path from v to c otherwise the path from c to b has more super-2 nodes than the path from a to b, contradicting its maximality.

So a and c are twins.

Now we prove the theorem by induction on the number of leaves n.

Base Case: $n \leq 4$. Theorem true immediately.
Ind. hyp. Thm true for trees with $< n$ leaves. Prove for $n \ (n > y)$.

Let x, y be twins in tree T_1 and let v be super-2 node in path.

Claim: x & y are twins in T_2.

Proof: If x, y not twins in T_2 the situation in T_2 is:

In T_1 the situation is:
Consider the tree induced by x, y, p, q.

In T_2:

```
    y
   /\
  p  q
```

Homeomorphic image: T'_2

In T_1: Either

```
    y
   /\
  p  q
```

or:

```
    y
   /\
  p  q
```

$T'_1 \neq T'_2$. Contradiction.
Return to proof of thm.
Let \(x, y \) be twins in \(T_1 \) and \(T_2 \).
For reasons similar to previous claim, either the super-2, node \(w \) on the path from \(x \) to \(y \) has degree 3 in both \(T_1, T_2 \) or degree \(\geq 3 \) in both \(T_1, T_2 \).

Cases: 1)

\[\begin{array}{c}
 \begin{array}{c}
 x \\
 w \\
 y
 \end{array} \\
 \begin{array}{c}
 \\ \\
 \\ \\
 \\ \\
 \end{array}
\end{array} \quad \begin{array}{c}
 \begin{array}{c}
 w \\
 x \\
 y
 \end{array} \\
 \begin{array}{c}
 \\ \\
 \\ \\
 \\ \\
 \end{array}
\end{array} \]

Delete \(x, y \) & the path from them to \(w \).
By ind. remaining trees homeomorphic.

Adding \(x, y \) to both does not change homeomorphism.
Delete y and its path to w.

By induction remaining trees homeomorphic.

Now add y and its path.