The Indexing Problem:

Preprocess: Text T.

Enable queries of the form:

Query: Given pattern P,

find all occurrences of P in T in time $O(|P| + \text{tocc})$,

where tocc is the number of occurrences.

Possible solutions: Using tries.
Definition:

Let \(S_1 = A_{11} A_{12} \ldots A_{1n_1} \$ \)
\(S_2 = A_{21} A_{22} \ldots A_{2n_2} \$ \)
\[\vdots \]
\(S_k = A_{k1} A_{k2} \ldots A_{kn_k} \$ \)

where \(\$ \in \Sigma \) is an eol symbol.

A trie is a labeled tree where:

1. Its root is the null string \(\Lambda \).
2. Has \(k \) leaves, each labeled by \(\$ \).
3. The \(k \) paths from the root to the leaves are labeled by \(S_1, \ldots, S_k \), respectively.
EXAMPLE:

The Strings:

A B A$

A B C A$

A A B C$

A A C$

A B A C$

B A$

The Trie

A

B

A

C

B

C

$
USES:

Fast retrieval.

Given a string $p_1 \ldots p_m$ we can find, in time $O(m)$ whether it is in the set $\{S_1, \ldots, S_k\}$.

In Previous Example: ABC not in but $ABAC$ is in.

Issue: Alphabet size.

Time is $O(m)$ for fixed alphabet.

$O(m \log \min(|\Sigma|, k))$ otherwise.

(binary search at every node)
Let $T = t_1 \ldots t_n \$ \$ be a string. Consider all $n+1$ suffixes of $\$:

$$
\$ \\
t_n \$
\t_{n-1} t_n \\
t_{n-2} t_{n-1} t_n \\
\ldots
\t_1 t_2 \ldots \ t_n \$

Construct a trie of the suffixes.
EXAMPLE:

\[T = ABABBA$ \]

Suffixes:
- $ A$
- $ BA$
- $ BBA$
- $ ABBA$
- $ BABBA$
- $ ABABBA$
- $ ABAABA$
- $ ABABBA$
- $ ABAABBA$

Trie:

Queries:
- A 3
- BA 2
- AB 2
- AA 0
Strategy for Indexing Problem:

PREPROCESSING: Construct trie of suffixes of T.

Query: Given $P = p_1 \ldots p_m$.

Run down trie from root, according to elements of P.

If stuck: no occurrence.
If path from root to node w is equal to P:
all leaves in subtree rooted at w are occurrences.

Time: $O(m + tocc)$
PROBLEM: Size of trie: $O(m^2)$
This is awful for large texts!!

EXAMPLE: A_1, A_2, \ldots, A_n

where $A_i \neq A_j$
for $i \neq j$

The trie:

FINITE ALPHABET EXAMPLE?

exercise.
Theorem:

Let T be a tree with n leaves where every node is either a leaf or has at least two children. Then T has at most $2n$ nodes.

Proof:

Easy by induction, for binary trees. For higher degree trees situation only improves (i.e. even less nodes). (e.g. change \star to \bigtriangleup.)
In our trie of suffixes: \[n+1 \text{ leaves.} \]

So if we contract chains of the form \[\cdots \]
we will get a tree of size \(O(n) \)

EXAMPLE:

![Diagram of a trie with contracted chains](image)
VERY FUNNY... we still need to write on the edges the text, for comparison purposes, and that is still $O(m^2)$ even though the tree has $O(n)$ nodes.

NOT SO. $O(n)$ words are sufficient!

write on every edge a left pointer and a right pointer to its substring's location in the text.

EXAMPLE:

Location: 1 2 ... n n+1
Text: A A$_2$... A$_n$ $\$
There exist many different algorithms for constructing suffix tree (compacted trie of suffixes) of text of length \(n \) in time \(O(m) \).

We will see Weiner's Algorithm (1973).

At this point

Indexing Problem is solved.
ANOTHER IMPORTANT TOOL...

LOWEST COMMON ANCESTOR (LCA)

Preprocess: Tree $T = (V, E)$

To enable following queries.

Query: Given nodes $a, b \in V$

Find $x \in V$ such that x is the lowest common ancestor of a and b.

EXAMPLE:

![Tree Diagram]

LCA$(18, 13) = 8$
LCA$(17, 11) = 3$
LCA$(9, 10) = 4$
LCA$(6, 7) = 1$
Harel & Tarjan (1983):

It is possible to preprocess an n-node tree in time $O(m)$ and answer subsequent LCA queries in time $O(1)$.

Landau (1984) made the following key observation:

In Suffix tree,

$LCA(a,b) =$ Longest Common Prefix of substrings ending in a,b resp.
EXAMPLE: \(T = ABABBA$ \)

\[\text{LCA}(1, 2) = 3 \]

longest common prefix of

\(ABABBA$ \) and \(ABBA$ \) is \(AB \)

\[\text{LCA}(6, 9) = 10 \]

longest common prefix of

\(BABBA$ \) and \(BBA$ \) is \(B \)

\[\text{LCA}(5, 9) = \Lambda \]

longest common prefix of

\(A$ \) and \(BBA$ \) is \(\Lambda \)
PUT TOGETHER SUFFIX TREES & LCA.

Get alternate string matching algorithm

INPUT: \(T, P \)

OUTPUT: All locations \(i \) in \(T \) where an occurrence of \(P \) starts.

Algorithm

Preprocessing:

1. Construct suffix tree for \(T \$_1, P \$_2 \), \(\$_1, \$_2 \in \Sigma \).

2. Preprocess suffix tree for LCA.

3. For each node \(v \) in suffix tree write \(l(v) \), the length of substring from root to \(v \).
Text Scanning:

for $i = 1$ to $n-m+1$ do

$x \leftarrow l(LCA(T_i, P))$

where T_i is the suffix $t_i t_{i+1} \ldots t_{n-1} P S_2$

and P is the suffix $P S_2$.

If $x \geq m$ then there is a match at i.

else, no match.

end Algorithm

Time:

Preprocessing: 1. $O((n+m) \log \min(|\Sigma|, m))$

2. $O(n)$

3. $O(n)$ (via DFS, for example)

Scanning: $O(n)$.
Example: \(T = \text{ABABBA}$, \\
\(P = \text{AB}$

In red: node's length.

\[
\ell(\text{LCA}(T_1, P)) = 2 \\
\ell(\text{LCA}(T_2, P)) = 0 \\
\ell(\text{LCA}(T_3, P)) = 2 \\
\ell(\text{LCA}(T_4, P)) = 0 \\
\ell(\text{LCA}(T_5, P)) = 0
\]
Alternate Algorithm to Bird-Baker

Do KMP algorithm going down column j with following change:

- whenever KMP compares t_{ij} with P_k,
 - compare t_{ij}, t_{ij+1}, ..., t_{ij+m-1}
 - with P_{k1}, P_{k2}, ..., P_{km}.

If comparison time $O(f(m))$ then algorithm time $O(m^2 f(m))$.
Use suffix trees and LCA to make such comparisons in time $O(1)$

Let P_1, P_2, \ldots, P_m be the rows of P,
T_1, T_2, \ldots, T_n be the rows of T,
$s_1, \ldots, s_{m+1} \in \Sigma$.

Preprocessing:
1. Construct suffix tree of $T_1, T_2, \ldots, T_n, s_1, P_1, s_2, P_2, \ldots, P_m, s_{m+1}$
2. Preprocess for LCA
3. Write $l(v)$ — length of substring from root to v — for each node v.

Subroutine \(\text{COMPARE} \left(t_{ij}, P_k \right) \)

\[
\text{If } \ell(LCA(T_{ij}, P_k)) \geq m \\
\text{then return equal} \\
\text{else return not equal}
\]

\[\text{end}\]

Where \(T_{ij} \) is the suffix starting at \(t_{ij} \) and \(P_k \) is the suffix starting at \(P_k \).
OPEN PROBLEM Posed by Galil (1985)

Input: T, P, k

Output: All locations i in T where P appears with at most k mismatches.

Can this problem be solved in time $O(nk)$?

Solution: (Landau 1986) Of course!

Suffix trees & LCA.

For each location i in T:

\[l_1 = \text{length of longest common prefix of } T_i \text{ and } P \]
\[l_2 = \text{length of longest common prefix of } T_{i+l_1} \text{ and } P_{i+l_1} \]
\[l_3 = \text{length of longest common prefix of } T_{i+l_1+l_2} \text{ and } P_{i+l_1+l_2+3} \]

\[\ldots \]
EDIT DISTANCE

In addition to mismatches, Levenshtein (1966) identified 2 more edit operations - insertions and deletions.

Text: A C D E F G H I
Pattern: A B C D E F G H

One deletion error rather than 7 mismatches.

Text: A I B C D E F G H
Pattern: A B C D E F G H

One insertion error rather than 7 mismatches.
PATTERN MATCHING WITH ERRORS

INPUT: Text $T = t_1 \ldots t_n$
Pattern $P = p_1 \ldots p_m$.

OUTPUT: For every location i, the minimum number of edit operations required to make P match a suffix of $t_1 t_2 \ldots t_i$.

NOTE: We usually considered errors starting at i, not ending. However, it is the same, just reverse text and pattern.

IDEA FOR ALGORITHM:
Dynamic Programming.
For each (i, j) let $\text{edit}(i, j)$ be the minimum edit distance of $p_i \ldots p_j$ ending at t_j.

Cases:

<table>
<thead>
<tr>
<th></th>
<th>t_j</th>
<th>t_{j+1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_i</td>
<td>p_{i+1}</td>
<td></td>
</tr>
</tbody>
</table>

If $t_{j+1} = p_{i+1}$, then

$$\text{edit}(i+1, j+1) = \text{edit}(i, j)$$

If $t_{j+1} \neq p_{i+1}$, then

$$\text{edit}(i+1, j+1) = \min(\text{edit}(i, j) + 1, \text{edit}(i, j+1) + 1, \text{edit}(i+1, j) + 1)$$

- **Mismatch**
- **Deletion**
- **Insertion**
Algorithm

If $p_i = t_j$ then $E[i,j] \leftarrow E[i-1,j-1]$
else $E[i,j] \leftarrow 1 + \min(E[i+1,j], E[i,j-1], E[i,j-1])$

Time: $O(n^2)$.
EXAMPLE:
Text: **ABBABB**
Pattern: **ABAB**

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>A</th>
<th>B</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Can we solve Galil's Open Problem for Edit Distance?

Idea: (Landau & Vishkin 1986)

Consider dynamic programming matrix D:

![Dynamic Programming Matrix](image)

But now we can advance on diagonals as long as pattern = text.

Advance until number $\geq k$ (no match) or till last row (match).
IMPLEMENTATION:

Define: diagonal d as all $D[i, j]$ where $j - i = d$.

Let $d_{r, e} = \text{highest row in diagonal } d \text{ where the number (of errors) is } e$.
Example:

![Diagram of a grid with marked cells and a legend indicating the number of errors and the diagonal.](image-url)
Algorithm (Dynamic Programming)

Given k errors.

Initialize:

<table>
<thead>
<tr>
<th></th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>k-1</th>
<th>k</th>
</tr>
</thead>
<tbody>
<tr>
<td>$-k$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$-(k-1)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-1</td>
<td></td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>$k-1$</td>
<td>k</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>-1</td>
<td></td>
<td></td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td></td>
<td></td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>$(n-m)$</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
</tbody>
</table>

Fill columns left to right, top to bottom as follows:
compute \(L_{d,e} \):

start with \(r \leftarrow \max(\) \(L_{d,e-1} + 1 \) at least one more than row of \(e-1 \) errors at \(d\text{-th diagonal} \)

\(L_{d+1,e-1} + 1 \) at least one more than highest row of \(e-1 \) errors at the diagonal above \((d+1) \)

\(L_{d-1,e-1} \) at least same row as the highest row of \(e-1 \) errors at the diagonal below \((d-1) \) \)
But now, extend as long as pattern equals text, i.e.

\[P_{r+1} = t_{r+d+1} \]
\[P_{r+2} = t_{r+d+2} \]

\[\vdots \]

End: Any row of \(L \) where \(m \) is reached is an occurrence.

Time: Above extension can be done in constant time by suffix trees and LCA.

Total Time: Fill table of size \(2n \times k \). Constant time per field:

\(O(nk) \)