ON LINE ALGORITHMS

Traditional Algorithmic Model:

Input

\[\downarrow\]

Process

\[\downarrow\]

Output

In "Real Life"

- Event
 - Event
 - Event

- Reaction
 - Reaction
 - Reaction

- System
Needed: New Model.
New Measurement function.

Example: Ski Rental Problem.
A pair of skis cost $100.
Renting a pair for one session: $10

Should we buy or rent?
- Depends on the situation.

If we buy but never ski—
lost $100

If we rent and ski k times
(k > 10) -
lost $(k-10)10$
How can we tell if a strategy is good?

Definition: An on-line algorithm A for problem P is α-competitive if for every input sequence s,

$$C_A(s) \leq \alpha C_{opt}(s)$$

where C_A is the cost of algorithm A's strategy, and C_{opt} is the cost of the optimal strategy.
EXAMPLE: Ski Rental.

Strategy: For the first 10 times - rent the skis.
At 11th time - buy.

Claim: \(\forall s \quad C_A(s) \leq 2C_{opt}(s) \)

Proof:

If we rent \(\leq 10 \) times then
\[C_A(s) = C_{opt}(s) \]

If we rent \(> 10 \) times then
\[C_{opt}(s) = 100 \]
\[C_A(s) = 200 \]
In constructing an on-line strategy we assume a malicious adversary in order to test our competitiveness.

EXAMPLE: The 2-Server Problem

Given: A grid, and two servers.

What is a competitive strategy?
Suggestion: Closest server serves an event.

Problem: Not α-competitive for any α.

Counterexample:

$C_A(s) = d+k$
$C_{opt}(s) = 2d$

For every fixed α, if $k > (2\alpha - 1)d$ then $d+k > 2\alpha d$
Are there competitive algorithms for the 2-server problem?

- Yes!

Simple example: HARMONIC strategy. HARMONIC is a probabilistic strategy. Its expected performance is competitive, i.e. \(\exists \alpha \) such that

\[
\sup_{s} \{ E[C_{A}(s) - \alpha C_{\text{opt}}(s)] \} < \infty
\]

In Words: The cost of algorithm A on any sequence S is at most \(\alpha \times \) optimum cost + some additive constant independent of S.
HARMONIC STRATEGY

Let s_1, s_2 be the 2 servers

Given a request at location r (r's location different from those of both servers)

Move s_i to r with probability

$$\frac{1}{s_i r} \cdot \frac{1}{s_1 r + \frac{1}{s_2 r}}$$

where ab is the distance from a to b.

Notes: 1.

$$\frac{1}{s_1 r} + \frac{1}{s_2 r} = 1$$

$$\frac{1}{s_1 r + s_2 r}$$

2. Strategy easily generalized to k servers.
What happens in our example?

Each server moves with probability $\frac{1}{2}$

Assume S_1 moved.

S_1 moves with probability

$$\frac{1}{d+1} = \frac{d}{d+1}$$

S_2 moves with probability

$$\frac{1}{d} = \frac{1}{d+1}$$

Alternate...
This means...

After \(d+1 \) alternations \((\text{cost } 2d)\)
with high probability \(S_2 \) will
move \((\text{cost } d)\)
and then we are at steady
state \((\text{cost } 0)\).

CONCLUDE:

In example,

\[
C_{\text{HARMONIC}} = 3C_{\text{OPT}}
\]

with high probability.
Grove (1991):

HARMONIC is c_k-competitive $\forall k$
(for k-server problem)
but c_k is very large and a rapidly growing function of k.

Chrobak & Larmore (1991):

HARMONIC is 3-competitive for two servers.

What about a deterministic strategy?
Irani & Rubinfeld (1995)
A (simple) 10-competitive algorithm for the 2-server problem. (balance based)

Manasse, Meghiddo & Sleator (1988)
A (complicated) 2-competitive algorithm for the 2-server problem. (residue based)

Chrobak & Larmore (1991)
A (simpler) 2-competitive algorithm for the 2-server problem. (embedded metric space based)
IDEA: Embed grid in a larger metric space.

The requests and servers are on the grid, but every server also has a "virtual" position in a larger metric space.
When a server is moved to serve a request, the other server's virtual image moves closer (although real image not moved and no cost incurred).

Eventually, virtual image may be close to a request - and thus serve it, even though physical server may be far.

- Server whose virtual image is closest to request - serves.
- Other server's virtual image is moved closer to request.
- The server who serves a request is physically moved and its virtual position set to coincide with physical.
IN EXAMPLE: (Conceptually)
The BALANCE Strategy

Minimize the quantity:

Total cost so far by server + cost of serving next request.

Notes:
1) BALANCE works on previous example.
2) BALANCE is k-competitive for k servers on a (k+1) point grid (MMS '88)
3) BALANCE has unbounded competitive ratio for 2-server problem.
EXAMPLE:

\[r_1 \gets 1 \rightarrow r_2 \]

\[\downarrow \]

\[d \]

\[\downarrow \]

\[a \quad b \]

\[r_3 \quad r_4 \]

(repeat request cycle)

a serves \(r_1, r_3, r_5, \ldots \)

b serves \(r_2, r_4, r_6, \ldots \)

Cost for \(X \) requests: \(dX \)

Optimal cost for \(X \) requests: \(X + d \).

Since \(d \) can be chosen arbitrarily large \(\Rightarrow \) no competitive bound.
The "Balance2" strategy

Minimize the quantity:

Total cost so far by server +
2\times \text{cost of serving next request}.

Irani-Rubinfeld (1995):

Balance2 is 10-competitive.
On previous example:

\[\begin{array}{cc}
 r_1 & r_2 \\
 a & b \\
\end{array} \]

- \(a\) serves \(r_1, r_3, r_5, r_7, \ldots\)
- \(b\) serves \(r_2, r_4, r_6, r_8, \ldots\)

So cost is \(2 \times C_{\text{opt}}\)

But once \(d \geq 3\) we stabilize at optimal!
THE PAGING PROBLEM

Cache

Slow Memory

K pages

N pages

Memory Access:

Address in page P in cache. \[\text{cost} = 0. \]

Address in page P not in cache:

- evict page q from cache.
- Page fault
- read page P to cache.

\[\text{cost} = 1. \]

Which page q do we evict?
Example:

k = 4

Page Access Sequence:

1 2 3 4 5 1 2 3 2 1 5 4 2 3 1 5 3 2 4

1, 2, 3, 4, 5

1 2 3 4

evict 4

1, 2, 3, 2, 1, 5, 4

1 2 3 5

evict 5

2, 3, 1, 5

1 2 3 4

evict 1

3, 2, 4

5 2 3 4
OFFLINE ALGORITHM:

Evict page whose next access is farthest.

This is optimum.

ONLINE STRATEGIES:

LIFO (Last In First Out)

Evict most recent arrival.

In previous example: \(\text{LIFO} = \text{OPT} \).

But... \(1 2 3 4 5 4 5 4 5 4 \ldots \)

\[\underbrace{54 \ldots 54}_n \text{ times} \]

\(2n \) faults!

\(\text{OPT} = 1 \) fault!

COMPETITIVE RATIO: \(\infty \)
LEAST RECENTLY USED (LRU):

Evict page whose last access was farthest (in past).

Return to Example:

```
1 2 3 4 5 1 2 3 2 1 5 4 2 3 1 5 3 2 4
```

```
1, 2, 3, 4, 5

1 2 3 4  evict 1

1 2 3 4 5  evict 2

2 3 4 5 1  evict 3

3 4 5 1 2  evict 4

4 5 1 2 3  evict 5

5 1 2 3  evict 1

2, 1, 5, 4

2, 3, 1, 5

2, 3, 1, 5

1 2 3 4  evict 1

3, 2, 4

1 2 3 4
```

COST: 6

COST OF OPT: 3
Theorem: LRU is \(k \)-competitive.

Proof:

Cases:

1. \(P \) evicted in \(\sigma \).

least recently used page evicted \(\Rightarrow \)
in \(\sigma \), \(k-1 \) different pages were requested. \(P \) was a different request (\(k \)).

Now new request is \(k+1 \) st.

Even OPT needs to fault at least once in \(k+1 \) different page requests!
2. As in case 1, for \(Q \) to be evicted twice \(\Rightarrow \)
\(k+1 \) different pages accessed in \(\sigma_2 \) \(\Rightarrow \)
OPT faults at least once.

3. \(k \) faults in \(\sigma \): none \(P \), none twice \(\Rightarrow \)
\(k \) different pages were faulted, none \(P \)!
With \(P \), \(k+1 \) different pages were accessed \(\Rightarrow \)
OPT faults at least once.

Conclude: For every \(k \) faults of LRU,
at least one fault of OPT.

\(LRU \leq k \cdot OPT \)
UPPER BOUND:

$1 2 3 \ldots k \ k+1 \ 1 2 3 \ldots k \ k+1 \ 1 \ldots$

LRU faults: $1 2 3 4 \ldots k+1 \ k \ k+1 \ldots$

OPT faults: $k \ k-1$

For sequence of length n:

- LRU faults $n-k$ times.
- OPT faults $\frac{n-k}{k}$ times.

$\text{LRU} = k \ \text{OPT}$

Can a better strategy be found?
Theorem: No deterministic algorithm can have a better than k competitive ratio in worst case.

Proof:
Consider case were request sequence has only $k+1$ different pages.

Online Algorithm:
Malicious adversary always requests page that was evicted last time.

fault every request.

Offline Algorithm:
Page furthest in future is evicted \Rightarrow
fault after at least k-requests.